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Abstract

Concrete mix design is a process based on sound technical principles for proportioning 
of ingredients in right quantities. This paper demonstrates the applicability of Artificial 
Neural Networks (ANN) Model for approximate proportioning of concrete mixes. For 
ANN a trained back propagation neural network is integrated in the model to learn 
experimental data pertaining to predict 7, 14 and 28-day compressive strength which 
have been loaded into a model, containing 55 concrete mixtures.  The ANN model 
proposed is based on 5 input parameters such as cement, sand, coarse aggregate, and 
water and fineness modulus. The proposed concrete mix proportion design is expected 
to reduce the number of trials in laboratory as well as field, saves cost of material as 
well as labor and also saves time as it provides higher accuracy. The concrete designed 
is expected to have higher durability and hence is economical.

Keywords: concrete mix, artificial neural network (ANN), 7-days strength, 14-days 
strength, 28-days compressive strength, fineness modulus, activation function, 
modeling.

INtroDUCtIoN

Concrete is the most widely used construction material because of 
its flowability in most complicated form i.e. its ability to take any 
shape while wet, and its strength development characteristics when it 

hardens. Concrete production is a complex process that involves the effect of 
several processing parameters on the quality control of concrete pertaining 
to workability, strength etc. These parameters are all effective in producing a 
single strength quantity of compressive strength.

Artificial intelligence has proven its capability in simulating and 
predicting the behaviour of the different physical phenomena in most of the 
engineering fields. Artificial intelligence is receiving greater attention from 
the building industry to aid in the decision-making process in areas such 
as diagnostics, design, and repair and rehabilitation. In civil engineering, 
design of concrete mix is difficult and sensitive. The classical way for the 
determination of concrete mix design is based on uncertainty and depends 
on expert ideas. 

Concrete is essentially a mixture which comprises of paste and aggregates. 
In concrete mix design and quality control, the uniaxial compressive strength 
of concrete is considered as the most valuable property, which in turn is 
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influenced by a number of factors. The concrete mix design is based on the 
principles of workability of fresh concrete, desired strength and durability of 
hardened concrete which in turn is governed by water-cement ratio law. The 
strength of the concrete is determined by the characteristics of the mortar, 
coarse aggregate, and the interface. For the same quality mortar, different types 
of coarse aggregate with different shape, texture, mineralogy, and strength may 
result in different concrete strengths. There are various types of mixes such as 
nominal mix, standard mix and design mix. Nominal mixes are mixes of fixed 
cement-aggregate ratio which ensures adequate strength. However, due to the 
variability of mix ingredients the nominal concrete for a given workability 
varies widely in strength. The nominal mixes of fixed cement-aggregate ratio 
(by volume) vary widely in strength and may result in under- or over-rich mixes. 
For this reason, the minimum compressive strength has been included in many 
specifications. These mixes are termed standard mixes. In designed mixes the 
performance of the concrete is specified by the designer but the mix proportions 
are determined by the producer of concrete, except that the minimum cement 
content can be laid down. The common method of expressing the proportions 
of ingredients of a concrete mix is in the terms of parts or ratios of cement, fine 
and coarse aggregates. For e.g., a concrete mix of proportions 1:2:4 means that 
cement, fine and coarse aggregate are in the ratio 1:2:4 or the mix contains one 
part of cement, two parts of fine aggregate and four parts of coarse aggregate. 
The proportions are either by volume or by mass which provides two design 
methods. The concrete mix design can be carried out using IS standard code 
or US system of units. The tests for compressive strength are generally carried 
out at about 7, 14 or 28 days from the date of placing the concrete. The testing 
at 28-days is standard and therefore essential and at other ages can be carried 
out, if necessary.

ANNs have been applied to many civil engineering applications with 
some degree of success. ANNs have been applied to geotechnical problem like 
prediction of settlement of shallow foundations [1]. Many researchers have 
used ANN in structural engineering developing various neural network models 
[2-14]. 

Artificial Neural Network (ANN) 

Neural networks are networks of many simple processes, which are called 
units, nodes, or neurons, with dense parallel interconnections. The connections 
between the neurons are called synapses. Each neuron receives weighted inputs 
from other neurons and communicates its outputs to other neurons by using an 
activation function. Thus, information is represented by massive cross-weighted 
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interconnections. Neural networks might be single-or multi layered. The single-
layer neural networks present processing units of the neural networks, which take 
input from the outside of the networks and transmit their output to the outside of 
the networks; otherwise, the neural networks are considered multi layered. The 
basic methodology of neural networks consists of three processes: Network 
training, testing, and implementation. The connection weights of the neural 
network are adjusted through the training process, while the training effect is 
referred to as learning. Training of neural networks usually involves modifying 
connection weights by means of a learning rule. The learning process is done by 
giving weights and biases computed from a set of training data or by adjusting 
the weights according to a certain condition. In other words, neural networks 
learn from examples and exhibit some capability for generalization beyond the 
training data. Then, other testing data are used to check the generalization. The 
initial weights and biases joining nodes of an input layer, hidden layers, and 
an output layer are commonly assigned randomly. The weights and biases are 
changed for the output of networks to match required data values. As input data 
are passed through hidden layers, sigmoidal activation functions are generally 
used. During the training procedure, the data are selected uniformly. A specific 
pass is completed when all data sets have been processed. Generally, several 
passes are required to attain a desired level of estimation accuracy. The final 
sets of weights and biases comprise the long-term memory, or synapses, of 
respective events. Consequently, learning corresponds to determining the 
weights and biases associated with the connections in the networks. The back-
propagation networks were used in this study. The learning mechanism of the 
back-propagation networks is a generalized delta rule that performs a gradient 
descent on the error space to minimize the total error between the actual 
calculated values and the desired ones of an output layer during modification 
of connection weights. In other words, a least mean square procedure is carried 
out to find the values of the connection weights that minimize the error function 
by using a gradient descent method. 

Artificial neural networks (ANNs) are multi-layered, data driven, trainable 
systems. They have been successfully used to predict various concrete 
properties. Their prediction ability, however, depends, to a large extent, on the 
completeness and accuracy of the experimental database used in the training 
process. The multi-layer perceptron networks (MLP) are the most widely used 
ANNs in engineering applications due to their ability to implement nonlinear 
transformations for functional approximation problems and to map a given 
input(s) into a desired output(s). The main objective in building an ANN-
based model is to train a specific network architecture using a comprehensive 
database to search for an optimum set of weights (connection strengths 
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between its processing units) for which the trained ANN can predict accurate 
values of outputs for a given set of inputs from within the range of the training 
data. A neural network model requires no functional relationship among the 
variables, as is the case with most of other regression analysis techniques. 
A neural network based modelling algorithm requires setting up of different 
learning parameters (like learning rate, momentum), the optimal number of 
nodes in the hidden layer and the number of hidden layers so as to have a less 
complex network with a relatively better generalization capability.

The use of ANN offers the following useful properties and capabilities:

Non-linearity•
Input-output mapping•
Adaptivity•
Contextual information•
Uniformity of analysis and design•

In this study, multilayer perceptron (MLP): a feed forward artificial neural 
network model is implemented. A large test database has been extensively 
surveyed and collected. It is then carefully examined to establish the input 
vectors and the desired output vectors. Finally, a new model is proposed based 
on ANN and then verified against experimental data which has been collected 
from different sources. 

Materials used and Database

The main ingredients are given below which form a part of the input data along 
with fineness modulus:

Cement•
Sand•
Coarse Aggregates•
Water•

The success of the model to predict the 7, 14 and 28-days compressive strength 
depends upon the magnitude of the training data. A database of about 55 mixes 
was retrieved from various literatures to predict the results from ANN models. 
The predicted results obtained from neural network were compared with 
the experimental values obtained experimentally. The training of ANNs was 
carried out using pair of input vector and output vector. The complete list of 
data is given in the Table 1 for the inputs and Table 2 for the actual outputs. 
The ranges for the various parameters for ANN modeling have been listed in 
Table 3.
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Table 1: Input data for the ANN modeling

S.No. Cement 
(kg/m3)

Sand(kg/m3) Coarse aggregates 
(kg/m3)

Water (mL) Fineness 
Modulus

1 462.5 721.5 1022.25 185 2.6

2 475 665 1054.5 190 2.4

3 475 698.25 1021.25 190 2.6

4 462.5 689.12 1031.38 185 2.4

5 462.5 721.5 1022.12 185 2.6

6 475 665 1054.5 190 2.4

7 475 698.25 1021.25 190 2.6

8 440.47 713.56 1057.13 185 2.4

9 440.47 739.99 1021.89 185 2.6

10 452.4 683.12 1054.09 190 2.4

11 452.4 764.56 1022.42 190 2.6

12 440.47 713.56 1057.13 185 2.4

13 440.47 739.99 1021.89 185 2.6

14 452.4 683.12 1054.09 190 2.4

15 452.4 764.56 1022.42 190 2.6

16 420.45 731.58 1055.33 185 2.4

17 420.45 765.22 1021.69 185 2.6

18 431.82 703.87 1057.96 190 2.4

19 431.82 742.73 1023.41 190 2.6

20 420.45 731.58 1055.33 185 2.4

21 420.45 765.22 1021.69 185 2.6

22 431.82 703.87 1057.96 190 2.4

23 431.82 742.73 1023.41 190 2.6

24 402.17 752.06 1065.75 185 2.4

25 402.17 780.21 985.32 185 2.6

26 413.04 726.95 1057.38 190 2.4

27 413.04 760 1024.34 190 2.6

28 402.17 752.06 1065.75 185 2.4

29 402.17 780.21 985.32 185 2.6

30 413.04 726.95 1057.38 190 2.4

31 413.04 760 1024.34 190 2.6
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Table 2: Actual Output data for modeling

S.No. 7 days Strength 14 days Strength 28 days Strength
1 27.68 32.71 38.4
2 24.66 26.68 29.88
3 27.35 28.68 35.88
4 24.75 27.66 29.77
5 27.42 34.95 39.37

S.No. Cement 
(kg/m3)

Sand(kg/m3) Coarse aggregates 
(kg/m3)

Water (mL) Fineness 
Modulus

32 385.42 766.99 1056.05 185 2.4

33 385.42 796.82 1021.36 185 2.6

34 395.83 744.16 1056.87 190 2.4

35 395.83 775.83 1021.24 190 2.6

36 385.42 766.99 1056.05 185 2.4

37 385.42 796.82 1021.36 185 2.6

38 395.83 744.16 1056.87 190 2.4

39 395.83 775.83 1021.24 190 2.6

40 370 780.7 1054.5 185 2.4

41 370 821.4 1021.2 185 2.6

42 380 760 1056.4 190 2.4

43 380 790.4 1022.2 190 2.6

44 370 780.7 1054.5 185 2.4

45 370 821.4 1021.2 85 2.6

46 380 760 1056.4 190 2.4

47 380 790.4 1022.2 190 2.6

48 355.77 796.93 1056.64 185 2.4

49 355.77 825.39 1021.06 185 2.6

50 365.38 774.61 1055.94 190 2.4

51 365.38 807.49 1023.06 190 2.6

52 355.77 796.93 1056.64 185 2.4

53 355.77 825.39 1021.06 185 2.6

54 365.38 774.61 1055.94 190 2.4

55 365.38 807.49 1023.06 190 2.6
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S.No. 7 days Strength 14 days Strength 28 days Strength
6 23.15 29.51 31.48
7 23.55 32.4 34.86
8 18.04 26.17 24.64
9 19.86 28.91 27.68
10 24.33 30.6 30.66
11 26.15 32.62 34.2
12 19.9 27.22 27.82
13 25.73 30.51 32.55
14 26.02 35.35 37.4
15 27.82 37.6 39.22
16 17.55 21.95 24.77
17 20.64 22.46 26.95
18 23.77 27.11 34.68
19 27.35 31.71 34.68
20 20 21.53 25.97
21 22.8 28.42 34.8
22 24.6 29.88 31.35
23 26 36.48 38.86
24 18.97 22.02 23.84
25 19.22 25.55 28.55
26 22.33 25.82 25.97
27 23.48 26.42 28.97
28 18.62 24.24 25.33
29 19.64 26.42 28.97
30 19.98 26.75 29.32
31 26.2 29.13 34.6
32 14.44 19.06 23.06
33 20.8 24.75 31.95
34 16.11 21.77 26.84
35 20.4 22.73 32.55
36 14.08 17.91 19.53
37 26 29.77 27.64
38 15.71 18.57 25.57
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Table 3: Range of parameters in database 

S.No. Parameters range

1. Cement 355.77-475.00

2. Sand 665.00-825.39

3. Coarse aggregates 985.32-1065.75

4. Water 185-190

5. Fineness modulus 2.4-2.6

S.No. 7 days Strength 14 days Strength 28 days Strength
39 17.66 23.88 28.57
40 13.91 17.93 21.82
41 21.6 21.82 24.88
42 16.11 21.77 26.84
43 20.4 22.73 32.55
44 14.08 17.91 19.53
45 26 29.77 25.64
46 15.71 18.57 25.57
47 17.66 23.88 28.57
48 15.08 20.26 24.84
49 17.13 23 28
50 17.82 23.2 25
51 24.31 27.57 28.9
52 13.84 17.8 25.6
53 15.66 20.4 29.3
54 16.91 20.13 25.97
55 19.57 29.46 29.77

Application of ANN

The multilayer perceptron approach has been used for developing of model. 
In the study the neural network is using back propagation training algorithm 
in this study. Back propagation is common method of training artificial 
neural networks so as to minimize the objective function. It is a supervised 
learning method and a generalization of the Delta rule. The activation 
function used is the log-sigmoidal function.  A sigmoid curve is produced by 
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a mathematical function having an “S” shape. Often, sigmoid function refers 
to the special case of the logistic function shown below (Fig. 1) and defined 
by the formula: 

S (t) = 1 / (1+e-t)

The procedure for determining the output from the inputs is as given:
1. Sum up weighted inputs, i.e.

IN
Nodj = ∑  (Wij xi)  

i=1
Where;   Nodj  is summation for jth-hidden node,

IN      is total number of input nodes, 
Wij    is connection weight ith input and jth  hidden node,
xi       is normalized input at ith input node.

2. Transform the weighted input:
Outj  = 1 / (1+ e  -Nodj )

Where;    Outj is output from jth hidden node.

3. Sum up the hidden node outputs:
HN

Nodk   =  ∑ (Wjk   Outj)k 
j=1

Where;   Nodk is summation for kth output node, 
HN  is total number of hidden nodes, 
Wjk  is connection weight between jth hidden and kth output node.

Figure 1: Logistic Curve
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4. Transform the weighted sum:
Outk =1 / (1+ e  -Nodj)

Where;   Outk  is output at kth output node.

Back propagation method of training of ANN has been done. From a 
desired output, the network learns from many inputs. It is a supervised learning 
method, and is a generalization of the delta rule. The learning rate is a common 
parameter in many of the learning algorithms, and affects the speed at which the 
ANN arrives at the minimum solution. In back propagation, the learning rate 
is analogous to the step-size parameter from the gradient-descent algorithm. 
The momentum parameter is used to prevent the system from converging to a 
local minimum or saddle point. A high momentum parameter can also help to 
increase the speed of convergence of the system. The values of learning rate 
(L) and momentum (M) used in the study are 0.2 and 0.1 respectively. The
training time (T) for each network is 400.

The normalization of the data had been done by using the software WEKA 
used in carrying out the ANN analysis. In the pre-process, the minimum, 
maximum, mean and standard deviation for each feature is computed and 
used in the sigmoidal function transformation. This maintains the resolution 
of most values that are within a standard deviation of the mean. Thus, it puts 
the normalized data in a range of 0 to 1. The cross-validation technique with 
20 folds has been carried out which is a standard tool in analytics and is an 
important feature for helping one developed and fine-tune the data mining 
models.

results and Analysis

The acceptance or rejection of the model developed is determined by its ability 
to predict the 7, 14 and 28 days compressive strength of concrete mix used. 
The correlation coefficient (Cc),, root mean square error (RMSE), and mean 
absolute error (MAE) is used to judge the performance of the neural network 
approach in predicting the results. Since the neural networks are trained on 
actual test data, they are trained to deal with inherent noisy or imprecise 
data. As new data become available, the neural network model can be readily 
updated by retraining with patterns which include these new data.

Table 4 give the actual, predicted values along with error for 7, 14 and 
28 days compressive strength. Table 5 gives the summary of Correlation 
Coefficient, Mean Absolute Error and Root Mean Square Error obtained to 
predict the 7, 14 and 28 days compressive strength. To compare the performance 
of models, graphs between actual and predicted strengths are plotted as shown 
in Figures 2, 3 and 4 for 7, 14 and 28 days compressive strength respectively. 
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Table 4: Actual v/s Predicted values with errors for 7, 14 and 28 days compressive strength.

7-days
compressive strength

14-days
compressive strength

28-days
compressive strength

Actual Predicted Error Actual Predicted Error Actual Predicted Error

26.02 27.245 1.225 37.4 33.258 -4.142 37.4 34.32 -3.08

15.66 15.128 -0.532 29.3 26.055 -3.245 29.3 25.388 -3.912

13.91 13.728 -0.182 21.82 22.123 0.303 21.82 21.422 -0.398

24.66 22.677 -1.983 29.88 30.605 0.725 29.88 30.872 0.992

26.2 23.739 -2.461 34.6 32.808 -1.792 34.6 32.193 -2.407

19.22 17.684 -1.536 28.55 26.979 -1.571 28.55 28.503 -0.047

19.86 25.163 5.303 27.68 30.079 2.399 27.68 27.919 0.239

27.68 26.608 -1.072 38.4 40.276 1.876 38.4 36.085 -2.315

24.75 22.277 -2.473 29.77 28.844 -0.926 29.77 29.305 -0.465

18.97 17.855 -1.115 23.84 25.474 1.634 23.84 24.391 0.551

25.73 26.129 0.399 32.55 35.424 2.874 32.55 34.806 2.256

13.84 13.545 -0.295 25.6 21.227 -4.373 25.6 22.222 -3.378

17.82 16.821 -0.999 25 26.685 1.685 25 26.913 1.913

23.77 23.339 -0.431 34.68 28.638 -6.042 34.68 29.428 -5.252

26.15 25.845 -0.305 34.2 35.451 1.251 34.2 33.967 -0.233

15.71 16.025 0.315 25.57 23.907 -1.663 25.57 23.986 -1.584

17.66 21.865 4.205 28.57 30.255 1.685 28.57 30.358 1.788

20.4 20.57 0.17 32.55 29.64 -2.91 32.55 30.751 -1.799

23.55 24.974 1.424 34.86 34.042 -0.818 34.86 34.316 -0.544

19.57 22.943 3.373 29.77 29.651 -0.119 29.77 30.525 0.755

19.9 22.264 2.364 27.82 26.511 -1.309 27.82 27.011 -0.809

24.31 21.251 -3.059 28.9 28.633 -0.267 28.9 26.004 -2.896

27.35 24.341 -3.009 35.88 34.279 -1.601 35.88 32.805 -3.075

21.6 15.64 -5.96 24.88 27.956 3.076 24.88 28.242 3.362

14.44 16.158 1.718 23.06 20.104 -2.956 23.06 21.639 -1.421

27.35 25.584 -1.766 34.68 36.31 1.63 34.68 35.557 0.877

16.91 15.401 -1.509 25.97 24.67 -1.3 25.97 25.361 -0.609

24.6 24.349 -0.251 31.35 30.88 -0.47 31.35 31.517 0.167

18.62 19.652 1.032 25.33 25.67 0.34 25.33 26.793 1.463
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19.98 22.111 2.131 29.32 28.95 -0.37 29.32 30.561 1.241

23.48 21.862 -1.618 28.97 30.236 1.266 28.97 32.606 3.636

14.08 14.783 0.703 19.53 24.597 5.067 19.53 20.68 1.15

20 18.474 -1.526 25.97 25.702 -0.268 25.97 23.669 -2.301

22.8 25.994 3.194 34.8 28.057 -6.743 34.8 26.71 -8.09

15.71 15.025 -0.685 25.57 25.437 -0.133 25.57 24.787 -0.783

23.15 25.536 2.386 31.48 32.206 0.726 31.48 30.409 -1.071

20.64 21.077 0.437 26.95 31.089 4.139 26.95 25.378 -1.572

27.82 27.125 -0.695 39.22 43.334 4.114 39.22 38.375 -0.845

20.8 22.784 1.984 31.95 30.928 -1.022 31.95 30.718 -1.232

26 15.228 -10.772 25.64 27.398 1.758 25.64 25.877 0.237

26 27.539 1.539 38.86 39.488 0.628 38.86 37.115 -1.745

14.08 14.32 0.24 19.53 22.524 2.994 19.53 22.053 2.523

22.33 19.098 -3.232 25.97 30.024 4.054 25.97 28.878 2.908

16.11 18.144 2.034 26.84 26.071 -0.769 26.84 24.919 -1.921

20.4 20.486 0.086 32.55 31.097 -1.453 32.55 29.781 -2.769

26 22.227 -3.773 27.64 30.365 2.725 27.64 30.551 2.911

16.11 17.283 1.173 26.84 23.751 -3.089 26.84 26.398 -0.442

17.66 20.137 2.477 28.57 27.641 -0.929 28.57 31.634 3.064

18.04 21.205 3.165 24.64 24.717 0.077 24.64 26.53 1.89

27.42 28.008 0.588 39.37 36.487 -2.883 39.37 42.729 3.359

15.08 17.479 2.399 24.84 23.735 -1.105 24.84 23.246 -1.594

24.33 25.831 1.501 30.66 33.825 3.165 30.66 34.193 3.533

17.13 20.783 3.653 28 28.324 0.324 28 28.427 0.427

19.64 20.765 1.125 28.97 28.993 0.023 28.97 29.635 0.665

17.55 19.207 1.657 24.77 23.561 -1.209 24.77 24.057 -0.713

Table 5: Summary of the coefficients for ANN models

S.No. Parameter Correlation 
coefficient

Mean absolute 
error

root mean 
square error

1 7-days compressive strength 0.8926 1.8111 2.286

2 14-days compressive strength 0.8540 1.8512 2.4848

3 28-day compressive strength 0.8787 1.8402 2.3434
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The results suggest that most of the points are lying within ±10% of the line of 
perfect agreement, which suggest that neural network, can effectively be used 
to predict the strengths.

Figure 2: Actual v/s Predicted 7-days compressive strength 

Figure 3: Actual v/s Predicted 14-days compressive strength 

Figure 4: Actual v/s Predicted 28-days compressive strength 
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CoNCLUSIoNS

Concrete is a highly complex material, and prediction of the accurate 
compressive strength of concrete is quite a difficult task to model. The proposed 
ANN Artificial intelligence models will save time, reduce the waste of material 
and the design cost. In the study, Artificial intelligence controller was proposed 
for determination of the Compressive strengths at various ages 7, 14 and 28 
days. The graphs show a marginal difference between the actual and predicted 
values. This difference is acceptable as the method is approximate. From the 
end user (engineers) point of view, outcome of the model is significant on 
following counts; it provides a way to capture inherent vagueness in the design. 
It offers flexibility for the mix design expert to decide appropriate value for 
parameters like 7, 14 and 28 compressive strength. Successful prediction of 
the outputs was done by all the methods, which indicated that ANN could be 
useful modeling tool for engineers and research scientists in the area of cement 
and concrete.

The correlation coefficients (Cc) for 7, 14 and 28 days is 0.8926, 0.8540 and 
0.8787 respectively. The ANN model helps to capture experimental data and to 
use it expeditiously during the design of fresh batches of trial mixes. The analysis 
demonstrates the feasibility of using neural networks for capturing non-linear 
interactions between various parameters in complex civil engineering systems. 
Thus, it can be concluded that the application of ANN is more user-friendly 
and more explicit model can be made which help the concrete industry to 
avoid the risk of faulty or deficient concrete that often entails durability and 
safety problems.
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