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Abstract: This work proposes an algorithm that uses paths based on tile 
segmentation to build complex clusters. After allocating data items (points) 
to geometric shapes in tile format, the complexity of our algorithm is related 
to the number of tiles instead of the number of points. The main novelty is the 
way our algorithm goes through the grids, saving time and providing good 
results. It does not demand any configuration parameters from users, making 
easier to use than other strategies. Besides, the algorithm does not create 
overlapping clusters, which simplifies the interpretation of results.
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INTRODUCTION
In spite of the fact that many clustering algorithms have been proposed in the 
last years [1], it is still a challenge to find irregular shaped clusters from large 
data sets in acceptable time not demanding too many computational resources. 
Methods that are able to identify arbitrary shapes impose restrictions of 
processed data size sets in order to maintain admissible levels of memory 
usage and processing time. 

In the context of Big Data and Data Mining, it is quite relevant the ability 
of finding clusters without knowing features of the data sets to be clustered. 
Often, these areas have to deal with large data sets that may produce clusters 
with arbitrary shapes from different sources, such as: geographic systems, 
medical systems, and sensors, among others. 

This way, clustering algorithms should present some features, such as: 
ability of assembling clusters of arbitrary shapes and high dimensionality data, 
capacity of dealing with large data sets having noise and outliers, independence 
of data order and low time complexity. These characteristics of clustering 
techniques allow discovering patterns that were not forecast previously. Current 
clustering algorithms have facing problems to execute these tasks.
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This work presents a new clustering algorithm, named Path Clustering, which 
addresses these features, having better performance than some competitor 
algorithms existent in literature. Despite the existence of grid clustering 
algorithms not be something new, the main novelty of Path Clustering is the 
way it goes through the grids, saving time and getting good results in terms of 
formed clusters. It considers points allocated in a space divided in small square 
forms, named tiles (subdivisions of a space in squares, cubes, etc). Neighbors 
tiles containing one or more points are grouped, which may create a clustering 
path. This strategy allows building clusters of irregular shapes, independently 
of data order, and with low complexity. In this context, a relevant cluster in this 
paper follows the definition related to Contiguous Cluster (Nearest neighbor 
or Transitive) given at [17]: “A cluster is a set of points such that a point in a 
cluster is closer (or more similar) to one or more other points in the cluster than 
to any point not in the cluster”.

The experiments demonstrate our strategy is scalable and provide clusters 
of good quality when it is compared to other clustering algorithms. At the 
same time, it allows to find complex patterns from arbitrary data distributions, 
irregular or not.

The rest of our work is organized as follow: Section 2 presents the 
related work, Section 3 details the proposed algorithm, Section 4 shows the 
experiments and Section 5 presents our remarks and points out future works.

RELATED WORK
The traditional clustering techniques generally divide clustering algorithms in two 
main classes: hierarchical and partitioning algorithms [2]. However, in the last 
years, many different techniques have been proposed trying to reduce the runtime, 
improve the quality and deal with multidimensional data [3]. These techniques 
have been applied in many different areas, such as Biomedical Informatics [19].

The hierarchical clustering algorithms make possible to have different visions 
of grouped objects and it includes agglomerative and divisive methods [4]. The 
agglomerative methods use a bottom-up strategy. They start with small clusters 
that are grouped in bigger clusters successively, having algorithms of complexity 
equal to O(n2) in the best scenario. The divisive methods adopt a top-down strategy, 
dividing the clusters progressively. Thus, their complexity is O(2n), which is much 
worse than the complexity of agglomerative methods. 

The partitioning clustering algorithms builds data partitions that are 
evaluated according to some criteria, as a distance between pairs of clusters. 
They include some strategies, such as: K-means and K-medoids Methods, and 
Density-Based Algorithms: Density-Based Connectivity Clustering and Density 
Functions Clustering [5].
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K-means aims at minimizing the average squared Euclidean distance of data 
from their centers. The centers can initially be chosen randomly and then they 
are recalculated until either a stop criterion is reached or a number of iterations 
are executed. K-medoids is similar to K-means, but an object that really exists 
represents the center of each cluster. The complexity of these algorithms is O(n). 
But they tend to form Voronoi sets [6], failing to more complex distributions. 
Another problem of K-means is the necessity of a parameter that inform the 
number of clusters. Some authors [20] work for providing strategies to discover 
the number of cluster in a data set, which could reduce the necessity of getting this 
information from the user.

Density-Based Algorithms [7], such as DBScan, define different clusters 
based on minimum number of points, radius of a region (r), core points, reachable 
points and outliers. A core point is a point that can connect directly at least to a 
minimum number of points within distance r of it. Points that can be connected 
directly to a core point are called reachable points. All points that are not core 
points or reachable points are called outliers. Based on this, a cluster is formed 
by a core point together with all reachable points from it, core or non-core. These 
methods generally work with numerical attributes and do not produce good results 
if the clusters have densities too different. Their complexity is O(n log n).

Other strategies of data clustering aim at dividing the data space in segments 
limited by multi-rectangular shapes. These strategies include Grid algorithms [5]. 
It deals with geometric shapes to aggregate data sets. Therefore, it stops treating 
points individually, after allocating them in shapes. This approach produces 
algorithms with O(n) complexity, where n is the number of points. GRID algorithms 
may work with attributes of different types and multiple dimensions. Normally, 
Grid algorithms apply complementary strategies, such as: density, partitioning and 
hierarchical methodologies, providing better flexibility for different applications. 
Bang Clustering, STING, DOC, MineClus and INSCY are examples of Hybrid 
Grid Strategies. Many times these strategies use heuristics to prune points, clusters 
and/or dimensions, which may become difficult to measure with precision their 
complexity. 

Bang Clustering [8], which is an improvement of GridClust [9], mixes 
some ideas of hierarchical clustering and density-based algorithms to build grids 
resolutions through dendograms, having complexity O(n) for several distributions 
and O(n2) in the worst case [3]. 

STING [10] uses statistical information and some constraints, such as density 
of objects in a region, to generate hierarchy of cells. It builds a cell tree using a top-
down strategy, where each cell can have one or more data points. The clustering 
process considers the density of cells similarly to Density-Based Algorithms. The 
tree can be build in O(n) time. If the tree has k leaves, the complexity for clustering 
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is O(k) in the worst case, since empty cells do not need to be stored in the tree [3].
DOC [11] establishes a subspace cluster using hypercubes of fixed side-

length containing a minimum of points. A parameter sets the balance between 
the dimensionality and the number of elements to be clusterized. It uses a random 
search algorithm to find the subspace from an initial seed of sampled points. 
MineCLUS [12] is derived from DOC, however, it uses a deterministic strategy to 
search the projected cluster based on a sample seed point.

INSCY [13] uses a tree (SCY-tree) to produce high dimensional clusters. It 
compares each point of the base clusters in order to merge the base clusters having 
points in common, generating higher dimensional clusters. INSCY has complexity 
O(2kn2), where k is the dimensionality of the maximal subspace and n corresponds 
to the size of a data set.

Table 1 shows a comparison of some attributes of the clustering methodologies 
presented previously. One of the problems involves to set the best values of the 
algorithms parameters, because some of them are not intuitive for regular users 
and demand some time and experimentation to reach correct values (for each 
clustering scenario).

Our approach, which is better detailed in the next Section, uses the number of 
points to build grid resolutions automatically. Therefore, our algorithm does not 
demand any parameter from users. The concept of neighbor’s tiles forms clusters, 
which makes the algorithm simple, less complex and faster than other initiatives, 
keeping a good level of quality for the clusters. The clusters are assembled when 
the algorithm walks through the tiles. Tiles containing one or more points that have 
as neighbor another tile containing also one or more points receive the same color. 
When there is no path (i.e. one or more tiles containing one or more points) that 
connects tiles containing one or more points, these tiles receive different colors. 
Thus, as colors are related to clusters, they belong to different clusters.

Table 1: Algorithms Comparison

Algorithms Parameters
Ability of building 

clusters with arbitrary 
shapes

Data order

Complexity of Algo-
rithms

(n = number of 
points;

k = number of grids)

Hierarchical 
Clustering

Points and
Minimal 
Distance among 
groups

Reasonable.

Some implementa-
tions are depen-
dent of data order 
(average linkage) 
and others are not 
suitable to deal 
with noise (Single 
or complete link-
age) (Khan, L. & 
Luo, F., 2005).

Divisive is O(n2) and
Agglomerative is 

O(2n).
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Algorithms Parameters
Ability of building 

clusters with arbitrary 
shapes

Data order

Complexity of Algo-
rithms

(n = number of 
points;

k = number of grids)

K-means 
and K-me-
doids

Points and 
Number of 
clusters.

Limited. They tend to 
form Voronoi sets and 
they fail for distributions 
that are more complex.

They depend of 
data order. They 
are sensitive to 
initialization.

O(n).

Densi-
ty-Based 
Algorithms

Points,
Radius r and 
Minimum Num-
ber of Points.

Reasonable.
They do not produce 
good results if the clus-
ters have densities too 
different.

They do not depend 
of data order.

DBScan (n log n 
using an accelerating 

index structure and for 
non-degenerated data 
and O(n2) in the worst 

case).

GRID 
Hybrid 
Algorithms

Vary according 
to the imple-
mentation.

Very good. The 
challenge is to find the 
correct resolution (grid 
size) for different distri-
butions.

Generally, they do 
not depend of data 
order.

Bang Clustering is 
O(n2) and

STING is O(n) for 
building the tree and 
O(k) for clustering. 
DOC and MineClus 

use heuristic (authors 
do not discuss algo-
rithm complexity). 
INSCY is O(2kn2).

Path Clus-
tering Points. Reasonable. It does not depend 

of data order.
O(t), where t is the 

number of tiles.

In this work, the following algorithms are compared to Path Clustering: K-
means, DBScan, INSCY, DOC and MineClus. Some of these algorithms can 
optionally generate overlapping or non-overlapping clusters. In this work, we 
set all algorithms in order to not produce overlapping clusters.

PROPOSED APPROACH
To illustrate our strategy, we generate a data set represented by points in a space. 
Fig. 1 shows these points (graph A) and also presents some results (graphs B, C and 
D) obtained using some basic ideas of Path Clustering algorithm for three different 
resolutions (different number of tiles).

The first resolution divides the space in one hundred (ten x ten) tiles. If a tile 
contains one or more points, it receives a color. A tile containing one or more points 
that has a contact with other tile also containing one or more points receive the same 
color. Tiles containing one or more points separated by tiles containing no points 
receive different colors. This strategy builds the clusters showed in Fig. 1 (graph B).

The second resolution divides the space in ten thousand (100 x 100) tiles. It 
applies the same strategy used previously, building the clusters showed in Fig. 1 
(graph C).
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Comparing the results obtained by these resolutions, it is possible to observe that 
the latter provides clusters that are closer to the expected from the original data 
distribution. 

However, if we continue dividing the space in more tiles (1000 x 1000 tiles), as 
presented in Fig. 1 (graph D), they become too small. In this case, some tiles do not touch 
each other as they should (tiles distance is smaller than points distance), which produce 
more clusters than expected. Thus, the analysis of the proposed strategy demonstrates 
the relevance of choosing the correct number of tiles to obtain good results.

For the sake of simplification, in this paper, we consider that all points are 
contained in a space of two dimension (axis x and y) with a square format.

Figure 1: Path Clustering Algorithm for three different resolutions

To reach good results, it was defined that the maximum resolution, that can vary 
according to the number of points, should generate a complexity lower or equal 
to O(n). Besides, if necessary, the transition among resolutions should be done 
easily. For example, four tiles in a flat space could be transformed in one big tile 
for the next resolution. In this case, the tiles of previous resolutions are equivalent 
to points for the next (lower) resolution. Thus, resolution was defined as a power 
of two, in order to make easier generating clusters for other resolutions through 
reuse of previous results (merging smaller tiles). Therefore, the results of higher 
resolutions can be used to generate results for lower resolutions. 

In this context, this work defines Resolution Scale (RS) as:
RS = 2 x          (1)
Where:
x = upper limit of [log2((number of points)(1/number of dimensions))] (2)

For instance, if the number of points is 100 and the number of dimensions is 
2, then RS is equal to 16. If the space size that contains the points is equal to 
20cm x 20cm, then the tile-side size is 20/16=1.25 and the total number of tiles 
is 16x16 (total of 256 tiles).

In this case, the next inferior resolution would merge each four tiles in one, 
generation 8x8 tiles (total of 64 tiles). In this paper, the proposed algorithm 
uses the higher resolution value to build the cluster. This algorithm has the 
following properties:
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1. It finds the maximum number of tiles considering only the number of points;
2. It paints tiles without considering density of points;
3. It uses a greedy strategy, just looking for local neighbors. Thus, it depends 

on the tiles size;
4. It has the complexity that is given by the maximum number of tiles (maxi-

mum RS) that is O(n). 
5. It is independent of data order; and
6. It has the capacity of finding clusters with arbitrary shapes in an efficient 

way.
Considering this, the pseudocode of the algorithm is presented as follows 

(←  means ‘to receive’ and = = means ‘is equal to’): 
Algorithm PathClustering

Input: P points
 Output: T[resolution] list of colored tiles
1. num-of-points ← points from P
2. S ← calculate the minimum space in a square format necessary to 

contain all points from P
3. number of dimensions← 2 (for a flat space)
4. X ← superior limit of [log2((num-of-points)(1/(number of dimensions)))])
5. RS ← 2 x

6. N←(RS)2 (approximately equal to num of points )
7. Tiles[] ← Create N tiles in S, dividing S in RS x RS=N tiles
8. Groups[] ← Create N groups in S (Each group can contain one color 

and one or more tiles)
9. Colors[] ← Create N colors
10. While t = Tiles.next (from left to right, top to bottom):

10.1. if t contains some point p from P in S then t.point=true else 
t.point=false

11. While t = Tiles.next:
11.1. group ← Groups.next
11.2. color ← Colors.next
11.3. if t.point==false then continue
11.4. if t.point==true and t.group is null then 

11.4.1. {t.group ← group; group.color ← color; group.tiles ← t}
11.5. if t.group is not null then 

11.5.1. {group ← t.group}
11.6. NE ← find neighbors of t in Tiles (Up to 8 neighbors)
11.7. While ne = NE.next: (Check neighbors’ groups)

11.7.1. if ne.group is not null and ne.group!=t.group then 
11.7.1.1. {add ne.group to t.group (generates a bigger t.group 

where the color is kept)}
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11.7.2. if ne.point==true and ne.group is null then
11.7.2.1. {ne.group ← group; group.tiles ← ne}

EXPERIMENTS
To compare the results obtained and execution time of Path Clustering with other 
algorithms of equivalent complexity, we carried out a set of experiments. We selected 
the following algorithms: K-means, DBScan, INSCY, DOC and MineClus (one 
or more representative of each category showed in Table 1, except by hierarchical 
clustering). The hardware used in the experiments was an Intel Core i3 3.6GHz 
processor with 4GB RAM and the software used was Ubuntu 14.04.4 LTS. We used 
implementations of the algorithms kindly shared on web. The implementation of 
K-means and DBScan were obtained in python [15]. For INSCY, DOC Clustering 
and MineClus we used the executable software in java from [16].

To compare the algorithms, we built two classes of distributions: Gaussian 
distributions and Radial distributions. These distributions took as base five random 
points in a flat space. Therefore, the maximum of five relevant clusters could be 
obtained. Doing this, we tried to compare the algorithms in different scenarios using 
just two dimensions. A future work will compare our strategy in a scenario of high-
dimensional data. The distributions considered distributions of 100 up to 10000 
points. A number of points higher than 10000 was not run because some algorithms 
caused a high memory consumption avoiding completing these experiments in an 
acceptable time.

For repeatability, the algorithms configurations used in the experiments are 
presented in Table 2. For Grid-based algorithms, when possible, we set similar 
conditions when it was possible.

Table 2: Algorithms Parameters

Algorithm Parameters

K-means number of clusters = 5

DBScan eps=0.1, min_samples=10

INSCY Density=1.0, epsilon=1.0, gridSize= number of points, maximalClusterRate=0.0, min-
Points=1.0, minSize=1, usingKernel=1

DOC alpha*number of points = 1, beta=0.1 , maxiter=1024, k=5, w=1.0

MineClus alpha*number of points = 1, beta=0.1 , maxiter=1024, k=5, w=1.0, numBins = 1

Fig. 2 shows a matrix of graphs containing Gaussian distributions. Each 
row corresponds to the distributions of 100, 500, 1000, 5000 and 10000 points, 
respectively. The columns corresponds to the results produced by the algorithms: 
K-means, DBScan, INSCY, DOC, MineClus and Path Clustering. Different 
clusters are represented by different colors in the graphs. For DBScan, black color 
represents points not grouped. DOC and INSCY may prune some points.
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Fig. 3 shows a matrix of graphs containing Radial distributions. The graphs 
obey the same pattern used in Fig. 2.

[18] considers that human vision is efficient to find cluster in two dimensions. 
Therefore, in this paper, relevant clusters are identified visually. In the case of 
Gaussian distributions, it was obtained the following number of clusters: four 
clusters for the distribution of 100 points, four clusters for the distribution of 
500 points, five clusters for the distribution of 1000 points, five clusters for the 
distribution of 5000 points and four cluster for the distribution of 10000 points. In 
the case of Radial distributions, it was obtained the following number of clusters: 
four clusters for the distribution of 100 points, five clusters for the distribution of 
500 points, five clusters for the distribution of 1000 points, five clusters for the 
distribution of 5000 points and four cluster for the distribution of 10000 points. 
These values can be verified observing the graphics of Fig. 2 and Fig. 3.

Visually, it possible to observe for Gaussian and Radial distributions that Path 
Clustering had better results in terms of time than the other algorithms. Besides, in 
terms of cluster discovery, Path Clustering also had good results for all distributions.

Figure 2: Gaussian distributions and clusters
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Figure 3: Radial distributions and clusters

Table 3 and Table 4 reveal the execution time (in microseconds) of the six 
algorithms for Gaussian and Radial distributions, considering 100, 500, 1000, 
5000 and 10000 points. An average runtime is resulted of five executions of 
an algorithm.

Table 3: Average Runtime for Gaussian Distributions

Number 
of Points

Kmeans DBScan INSCY DOC MineClus PathClus-
tering

100 31248 <1 15000 15000 32000 <1
500 406254 15625 125000 31000 47000 <1
1000 265624 15624 531000 313000 812000 <1
5000 1344491 203131 9110000 7387000 20818000 15624
10000 26374170 687715 43834000 30111000 77281000 31248
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Table 4: Average Runtime for Radial Distributions

Number 
of Points

Kmeans DBScan INSCY DOC MineClus PathClus-
tering

100 46878 <1 15000 <1 94000 <1

500 484379 15626 125000 125000 109000 <1
1000 984472 15624 360000 406000 1313000 <1

5000 12564011 126661 7047000 8324000 58773000 31254

10000 20588678 281251 26868000 36659000 193472000 31245

Fig. 4 shows the total average time comparison (in microseconds) for 
Gaussian and Radial distributions, considering the values of Table 3 and Table 
4. Axis Y is in logarithm scale. The results showed that, considering these two 
distributions, Path Clustering was more than 10 times faster on average than 
the second faster algorithm: DBScan.

Figure 4: Total Average Runtime

Additionally, to measure the quality of the results, we used two metrics: 
precision and recall, derived from the Information Retrieval area.

Precision can be defined as the number of relevant returned results divided 
by the number of returned results [14]. We adapted this concept for cluster 
scenario, using precision as the as the number of relevant returned clusters 
divided by the number of returned clusters.
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Recall can be defined as the number of relevant returned results divided by the 
number of relevant results [14]. We used this as the number of relevant returned 
clusters divided by the number of relevant clusters. In our experiments, the 
maximum number of relevant clusters was five.

Fig. 5 presents the precision results for Gaussian distributions. Fig. 6 
shows the recall results for Gaussian distributions. In three of five tests, Path 
Clustering got the best results for precision and recall.

Figure 5: Precision for Gaussian Distributions

Figure 6: Recall for Gaussian Distributions

Fig. 7 presents the precision results for Radial distributions. It is possible to 
notice that Path Clustering got the best possible results in all cases.

Fig. 8 shows the recall results for Radial distributions. In four distributions, 
Path Clustering got the higher recall values.
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Figure 7: Precision for Radial Distributions

Figure 8: Recall for Radial Distributions

It important to mention that Path Clustering used an automatic configuration 
that does not demand any parameter from users. It makes the algorithm easier 
to use but it may reduce its precision and recall in some cases. One strategy to 
improve the results is to adjust the number of grids manually in case of neces-
sity, increasing or reducing slightly this number. In future works, we intend 
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to develop a strategy to calculate the best number of grids according to the 
distribution and number of points.

CONCLUSION
This paper presents a grouping algorithm named Path Clustering. It is a clustering 
grid algorithm that divides data space in segments limited by square shapes called 
tiles. The way used to navigate from one tile to another provides a new faster strategy 
to group data. It uses a greedy strategy, navigating through local neighbors following 
a specific path. Tiles containing one or more points separated by tiles containing no 
points receive different colors. Different colors indicate different groups. 

After allocating data items (points) in geometric shapes in tile format, the 
complexity of our algorithm is related to the number of tiles instead of the number 
of points. Thus, the number of tiles is fundamental to reduce the complexity of our 
algorithm. In our strategy, a tile is represented by a square shape and the square-side 
size is a number related to a concept named Resolution Scale. In order to keep a 
balance between low complexity and good results for different data distributions, 
we proposed that maximum Resolution Scale should provide a complexity of 
O(n), reducing space in memory and time of processing when compared to other 
algorithms.

Other interesting characteristic is that the algorithm presented in this paper does 
not require parameters from users beyond the data set itself, making easier to use 
than many other algorithms.

It was performed a comparative experiment considering Path Clustering and 
other five algorithms. The experiments demonstrated our strategy is scalable using 
two type of distributions (Gaussian and Radial) with different number of points. Path 
clustering showed the best performance in terms of time. Besides, their clusters get a 
good precision and recall in most part of tested distributions, considering the idea of 
a Contiguous Cluster (Nearest neighbor or Transitive). At the same time, it allows to 
find complex patterns from arbitrary data distributions, irregular or not.

Path Clustering implementation used in this work did not apply concurrent 
computing to execute the processes. Concurrent algorithms can execute processes 
in parallel, reducing processing time. Thus, we intend to implement this feature in 
future works, allowing to reduce even more the execution time for grouping data. 
Besides, we intend to compare the algorithm in a high-dimensional data scenario 
and calculate automatically the best number of grids according to the distribution 
and number of points.
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