
Path Clustering: Grouping in an Efficient Way
Complex Data Distributions

Abstract: This work proposes an algorithm that uses paths based on tile
segmentation to build complex clusters. After allocating data items (points)
to geometric shapes in tile format, the complexity of our algorithm is related
to the number of tiles instead of the number of points. The main novelty is the
way our algorithm goes through the grids, saving time and providing good
results. It does not demand any configuration parameters from users, making
easier to use than other strategies. Besides, the algorithm does not create
overlapping clusters, which simplifies the interpretation of results.

Keywords: Cluster, grid, complexity, points, shapes.

R. Q. A. Fernandes1, W. A. Pinheiro1,2,3, G. B. Xexéo3, J. M. de Souza3

1 Centro de Desenvolvimento de Sistemas, SMU, Brasília, DF, CEP, Brazil.
2 Instituto Militar de Engenharia, Praia Vermelha, Urca, Rio de Janeiro, RJ,
CEP, Brazil.
3COPPE/UFRJ, Universidade Federal do Rio de Janeiro, RJ, PO Box 68.501, Brazil.
E-mail: ricardo@cds.eb.mil.br, awallace@cos.ufrj.br, xexeo@cos.ufrj.br, jano@cos.ufrj.br
Published Online: 28 December, 2017
The Author(s) 2017. This article is published with open access at www.chitkara.edu.in/publications

Journal on Today’s Ideas –
Tomorrow’s Technologies,

Vol. 5, No. 2, 2017
pp. 141-155

INTRODUCTION
In spite of the fact that many clustering algorithms have been proposed in the
last years [1], it is still a challenge to find irregular shaped clusters from large
data sets in acceptable time not demanding too many computational resources.
Methods that are able to identify arbitrary shapes impose restrictions of
processed data size sets in order to maintain admissible levels of memory
usage and processing time.

In the context of Big Data and Data Mining, it is quite relevant the ability
of finding clusters without knowing features of the data sets to be clustered.
Often, these areas have to deal with large data sets that may produce clusters
with arbitrary shapes from different sources, such as: geographic systems,
medical systems, and sensors, among others.

This way, clustering algorithms should present some features, such as:
ability of assembling clusters of arbitrary shapes and high dimensionality data,
capacity of dealing with large data sets having noise and outliers, independence
of data order and low time complexity. These characteristics of clustering
techniques allow discovering patterns that were not forecast previously. Current
clustering algorithms have facing problems to execute these tasks.

DOI: 10.15415/jotitt.2017.52009

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

142

This work presents a new clustering algorithm, named Path Clustering, which
addresses these features, having better performance than some competitor
algorithms existent in literature. Despite the existence of grid clustering
algorithms not be something new, the main novelty of Path Clustering is the
way it goes through the grids, saving time and getting good results in terms of
formed clusters. It considers points allocated in a space divided in small square
forms, named tiles (subdivisions of a space in squares, cubes, etc). Neighbors
tiles containing one or more points are grouped, which may create a clustering
path. This strategy allows building clusters of irregular shapes, independently
of data order, and with low complexity. In this context, a relevant cluster in this
paper follows the definition related to Contiguous Cluster (Nearest neighbor
or Transitive) given at [17]: “A cluster is a set of points such that a point in a
cluster is closer (or more similar) to one or more other points in the cluster than
to any point not in the cluster”.

The experiments demonstrate our strategy is scalable and provide clusters
of good quality when it is compared to other clustering algorithms. At the
same time, it allows to find complex patterns from arbitrary data distributions,
irregular or not.

The rest of our work is organized as follow: Section 2 presents the
related work, Section 3 details the proposed algorithm, Section 4 shows the
experiments and Section 5 presents our remarks and points out future works.

RELATED WORK
The traditional clustering techniques generally divide clustering algorithms in two
main classes: hierarchical and partitioning algorithms [2]. However, in the last
years, many different techniques have been proposed trying to reduce the runtime,
improve the quality and deal with multidimensional data [3]. These techniques
have been applied in many different areas, such as Biomedical Informatics [19].

The hierarchical clustering algorithms make possible to have different visions
of grouped objects and it includes agglomerative and divisive methods [4]. The
agglomerative methods use a bottom-up strategy. They start with small clusters
that are grouped in bigger clusters successively, having algorithms of complexity
equal to O(n2) in the best scenario. The divisive methods adopt a top-down strategy,
dividing the clusters progressively. Thus, their complexity is O(2n), which is much
worse than the complexity of agglomerative methods.

The partitioning clustering algorithms builds data partitions that are
evaluated according to some criteria, as a distance between pairs of clusters.
They include some strategies, such as: K-means and K-medoids Methods, and
Density-Based Algorithms: Density-Based Connectivity Clustering and Density
Functions Clustering [5].

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

143

K-means aims at minimizing the average squared Euclidean distance of data
from their centers. The centers can initially be chosen randomly and then they
are recalculated until either a stop criterion is reached or a number of iterations
are executed. K-medoids is similar to K-means, but an object that really exists
represents the center of each cluster. The complexity of these algorithms is O(n).
But they tend to form Voronoi sets [6], failing to more complex distributions.
Another problem of K-means is the necessity of a parameter that inform the
number of clusters. Some authors [20] work for providing strategies to discover
the number of cluster in a data set, which could reduce the necessity of getting this
information from the user.

Density-Based Algorithms [7], such as DBScan, define different clusters
based on minimum number of points, radius of a region (r), core points, reachable
points and outliers. A core point is a point that can connect directly at least to a
minimum number of points within distance r of it. Points that can be connected
directly to a core point are called reachable points. All points that are not core
points or reachable points are called outliers. Based on this, a cluster is formed
by a core point together with all reachable points from it, core or non-core. These
methods generally work with numerical attributes and do not produce good results
if the clusters have densities too different. Their complexity is O(n log n).

Other strategies of data clustering aim at dividing the data space in segments
limited by multi-rectangular shapes. These strategies include Grid algorithms [5].
It deals with geometric shapes to aggregate data sets. Therefore, it stops treating
points individually, after allocating them in shapes. This approach produces
algorithms with O(n) complexity, where n is the number of points. GRID algorithms
may work with attributes of different types and multiple dimensions. Normally,
Grid algorithms apply complementary strategies, such as: density, partitioning and
hierarchical methodologies, providing better flexibility for different applications.
Bang Clustering, STING, DOC, MineClus and INSCY are examples of Hybrid
Grid Strategies. Many times these strategies use heuristics to prune points, clusters
and/or dimensions, which may become difficult to measure with precision their
complexity.

Bang Clustering [8], which is an improvement of GridClust [9], mixes
some ideas of hierarchical clustering and density-based algorithms to build grids
resolutions through dendograms, having complexity O(n) for several distributions
and O(n2) in the worst case [3].

STING [10] uses statistical information and some constraints, such as density
of objects in a region, to generate hierarchy of cells. It builds a cell tree using a top-
down strategy, where each cell can have one or more data points. The clustering
process considers the density of cells similarly to Density-Based Algorithms. The
tree can be build in O(n) time. If the tree has k leaves, the complexity for clustering

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

144

is O(k) in the worst case, since empty cells do not need to be stored in the tree [3].
DOC [11] establishes a subspace cluster using hypercubes of fixed side-

length containing a minimum of points. A parameter sets the balance between
the dimensionality and the number of elements to be clusterized. It uses a random
search algorithm to find the subspace from an initial seed of sampled points.
MineCLUS [12] is derived from DOC, however, it uses a deterministic strategy to
search the projected cluster based on a sample seed point.

INSCY [13] uses a tree (SCY-tree) to produce high dimensional clusters. It
compares each point of the base clusters in order to merge the base clusters having
points in common, generating higher dimensional clusters. INSCY has complexity
O(2kn2), where k is the dimensionality of the maximal subspace and n corresponds
to the size of a data set.

Table 1 shows a comparison of some attributes of the clustering methodologies
presented previously. One of the problems involves to set the best values of the
algorithms parameters, because some of them are not intuitive for regular users
and demand some time and experimentation to reach correct values (for each
clustering scenario).

Our approach, which is better detailed in the next Section, uses the number of
points to build grid resolutions automatically. Therefore, our algorithm does not
demand any parameter from users. The concept of neighbor’s tiles forms clusters,
which makes the algorithm simple, less complex and faster than other initiatives,
keeping a good level of quality for the clusters. The clusters are assembled when
the algorithm walks through the tiles. Tiles containing one or more points that have
as neighbor another tile containing also one or more points receive the same color.
When there is no path (i.e. one or more tiles containing one or more points) that
connects tiles containing one or more points, these tiles receive different colors.
Thus, as colors are related to clusters, they belong to different clusters.

Table 1: Algorithms Comparison

Algorithms Parameters
Ability of building

clusters with arbitrary
shapes

Data order

Complexity of Algo-
rithms

(n = number of
points;

k = number of grids)

Hierarchical
Clustering

Points and
Minimal
Distance among
groups

Reasonable.

Some implementa-
tions are depen-
dent of data order
(average linkage)
and others are not
suitable to deal
with noise (Single
or complete link-
age) (Khan, L. &
Luo, F., 2005).

Divisive is O(n2) and
Agglomerative is

O(2n).

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

145

Algorithms Parameters
Ability of building

clusters with arbitrary
shapes

Data order

Complexity of Algo-
rithms

(n = number of
points;

k = number of grids)

K-means
and K-me-
doids

Points and
Number of
clusters.

Limited. They tend to
form Voronoi sets and
they fail for distributions
that are more complex.

They depend of
data order. They
are sensitive to
initialization.

O(n).

Densi-
ty-Based
Algorithms

Points,
Radius r and
Minimum Num-
ber of Points.

Reasonable.
They do not produce
good results if the clus-
ters have densities too
different.

They do not depend
of data order.

DBScan (n log n
using an accelerating

index structure and for
non-degenerated data
and O(n2) in the worst

case).

GRID
Hybrid
Algorithms

Vary according
to the imple-
mentation.

Very good. The
challenge is to find the
correct resolution (grid
size) for different distri-
butions.

Generally, they do
not depend of data
order.

Bang Clustering is
O(n2) and

STING is O(n) for
building the tree and
O(k) for clustering.
DOC and MineClus

use heuristic (authors
do not discuss algo-
rithm complexity).
INSCY is O(2kn2).

Path Clus-
tering Points. Reasonable. It does not depend

of data order.
O(t), where t is the

number of tiles.

In this work, the following algorithms are compared to Path Clustering: K-
means, DBScan, INSCY, DOC and MineClus. Some of these algorithms can
optionally generate overlapping or non-overlapping clusters. In this work, we
set all algorithms in order to not produce overlapping clusters.

PROPOSED APPROACH
To illustrate our strategy, we generate a data set represented by points in a space.
Fig. 1 shows these points (graph A) and also presents some results (graphs B, C and
D) obtained using some basic ideas of Path Clustering algorithm for three different
resolutions (different number of tiles).

The first resolution divides the space in one hundred (ten x ten) tiles. If a tile
contains one or more points, it receives a color. A tile containing one or more points
that has a contact with other tile also containing one or more points receive the same
color. Tiles containing one or more points separated by tiles containing no points
receive different colors. This strategy builds the clusters showed in Fig. 1 (graph B).

The second resolution divides the space in ten thousand (100 x 100) tiles. It
applies the same strategy used previously, building the clusters showed in Fig. 1
(graph C).

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

146

Comparing the results obtained by these resolutions, it is possible to observe that
the latter provides clusters that are closer to the expected from the original data
distribution.

However, if we continue dividing the space in more tiles (1000 x 1000 tiles), as
presented in Fig. 1 (graph D), they become too small. In this case, some tiles do not touch
each other as they should (tiles distance is smaller than points distance), which produce
more clusters than expected. Thus, the analysis of the proposed strategy demonstrates
the relevance of choosing the correct number of tiles to obtain good results.

For the sake of simplification, in this paper, we consider that all points are
contained in a space of two dimension (axis x and y) with a square format.

Figure 1: Path Clustering Algorithm for three different resolutions

To reach good results, it was defined that the maximum resolution, that can vary
according to the number of points, should generate a complexity lower or equal
to O(n). Besides, if necessary, the transition among resolutions should be done
easily. For example, four tiles in a flat space could be transformed in one big tile
for the next resolution. In this case, the tiles of previous resolutions are equivalent
to points for the next (lower) resolution. Thus, resolution was defined as a power
of two, in order to make easier generating clusters for other resolutions through
reuse of previous results (merging smaller tiles). Therefore, the results of higher
resolutions can be used to generate results for lower resolutions.

In this context, this work defines Resolution Scale (RS) as:
RS = 2 x (1)
Where:
x = upper limit of [log2((number of points)(1/number of dimensions))] (2)

For instance, if the number of points is 100 and the number of dimensions is
2, then RS is equal to 16. If the space size that contains the points is equal to
20cm x 20cm, then the tile-side size is 20/16=1.25 and the total number of tiles
is 16x16 (total of 256 tiles).

In this case, the next inferior resolution would merge each four tiles in one,
generation 8x8 tiles (total of 64 tiles). In this paper, the proposed algorithm
uses the higher resolution value to build the cluster. This algorithm has the
following properties:

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

147

1. It finds the maximum number of tiles considering only the number of points;
2. It paints tiles without considering density of points;
3. It uses a greedy strategy, just looking for local neighbors. Thus, it depends

on the tiles size;
4. It has the complexity that is given by the maximum number of tiles (maxi-

mum RS) that is O(n).
5. It is independent of data order; and
6. It has the capacity of finding clusters with arbitrary shapes in an efficient

way.
Considering this, the pseudocode of the algorithm is presented as follows

(← means ‘to receive’ and = = means ‘is equal to’):
Algorithm PathClustering

Input: P points
 Output: T[resolution] list of colored tiles
1. num-of-points ← points from P
2. S ← calculate the minimum space in a square format necessary to

contain all points from P
3. number of dimensions← 2 (for a flat space)
4. X ← superior limit of [log2((num-of-points)(1/(number of dimensions)))])
5. RS ← 2 x

6. N←(RS)2 (approximately equal to num of points)
7. Tiles[] ← Create N tiles in S, dividing S in RS x RS=N tiles
8. Groups[] ← Create N groups in S (Each group can contain one color

and one or more tiles)
9. Colors[] ← Create N colors
10. While t = Tiles.next (from left to right, top to bottom):

10.1. if t contains some point p from P in S then t.point=true else
t.point=false

11. While t = Tiles.next:
11.1. group ← Groups.next
11.2. color ← Colors.next
11.3. if t.point==false then continue
11.4. if t.point==true and t.group is null then

11.4.1. {t.group ← group; group.color ← color; group.tiles ← t}
11.5. if t.group is not null then

11.5.1. {group ← t.group}
11.6. NE ← find neighbors of t in Tiles (Up to 8 neighbors)
11.7. While ne = NE.next: (Check neighbors’ groups)

11.7.1. if ne.group is not null and ne.group!=t.group then
11.7.1.1. {add ne.group to t.group (generates a bigger t.group

where the color is kept)}

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

148

11.7.2. if ne.point==true and ne.group is null then
11.7.2.1. {ne.group ← group; group.tiles ← ne}

EXPERIMENTS
To compare the results obtained and execution time of Path Clustering with other
algorithms of equivalent complexity, we carried out a set of experiments. We selected
the following algorithms: K-means, DBScan, INSCY, DOC and MineClus (one
or more representative of each category showed in Table 1, except by hierarchical
clustering). The hardware used in the experiments was an Intel Core i3 3.6GHz
processor with 4GB RAM and the software used was Ubuntu 14.04.4 LTS. We used
implementations of the algorithms kindly shared on web. The implementation of
K-means and DBScan were obtained in python [15]. For INSCY, DOC Clustering
and MineClus we used the executable software in java from [16].

To compare the algorithms, we built two classes of distributions: Gaussian
distributions and Radial distributions. These distributions took as base five random
points in a flat space. Therefore, the maximum of five relevant clusters could be
obtained. Doing this, we tried to compare the algorithms in different scenarios using
just two dimensions. A future work will compare our strategy in a scenario of high-
dimensional data. The distributions considered distributions of 100 up to 10000
points. A number of points higher than 10000 was not run because some algorithms
caused a high memory consumption avoiding completing these experiments in an
acceptable time.

For repeatability, the algorithms configurations used in the experiments are
presented in Table 2. For Grid-based algorithms, when possible, we set similar
conditions when it was possible.

Table 2: Algorithms Parameters

Algorithm Parameters

K-means number of clusters = 5

DBScan eps=0.1, min_samples=10

INSCY Density=1.0, epsilon=1.0, gridSize= number of points, maximalClusterRate=0.0, min-
Points=1.0, minSize=1, usingKernel=1

DOC alpha*number of points = 1, beta=0.1 , maxiter=1024, k=5, w=1.0

MineClus alpha*number of points = 1, beta=0.1 , maxiter=1024, k=5, w=1.0, numBins = 1

Fig. 2 shows a matrix of graphs containing Gaussian distributions. Each
row corresponds to the distributions of 100, 500, 1000, 5000 and 10000 points,
respectively. The columns corresponds to the results produced by the algorithms:
K-means, DBScan, INSCY, DOC, MineClus and Path Clustering. Different
clusters are represented by different colors in the graphs. For DBScan, black color
represents points not grouped. DOC and INSCY may prune some points.

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

149

Fig. 3 shows a matrix of graphs containing Radial distributions. The graphs
obey the same pattern used in Fig. 2.

[18] considers that human vision is efficient to find cluster in two dimensions.
Therefore, in this paper, relevant clusters are identified visually. In the case of
Gaussian distributions, it was obtained the following number of clusters: four
clusters for the distribution of 100 points, four clusters for the distribution of
500 points, five clusters for the distribution of 1000 points, five clusters for the
distribution of 5000 points and four cluster for the distribution of 10000 points. In
the case of Radial distributions, it was obtained the following number of clusters:
four clusters for the distribution of 100 points, five clusters for the distribution of
500 points, five clusters for the distribution of 1000 points, five clusters for the
distribution of 5000 points and four cluster for the distribution of 10000 points.
These values can be verified observing the graphics of Fig. 2 and Fig. 3.

Visually, it possible to observe for Gaussian and Radial distributions that Path
Clustering had better results in terms of time than the other algorithms. Besides, in
terms of cluster discovery, Path Clustering also had good results for all distributions.

Figure 2: Gaussian distributions and clusters

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

150

Figure 3: Radial distributions and clusters

Table 3 and Table 4 reveal the execution time (in microseconds) of the six
algorithms for Gaussian and Radial distributions, considering 100, 500, 1000,
5000 and 10000 points. An average runtime is resulted of five executions of
an algorithm.

Table 3: Average Runtime for Gaussian Distributions

Number
of Points

Kmeans DBScan INSCY DOC MineClus PathClus-
tering

100 31248 <1 15000 15000 32000 <1
500 406254 15625 125000 31000 47000 <1
1000 265624 15624 531000 313000 812000 <1
5000 1344491 203131 9110000 7387000 20818000 15624
10000 26374170 687715 43834000 30111000 77281000 31248

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

151

Table 4: Average Runtime for Radial Distributions

Number
of Points

Kmeans DBScan INSCY DOC MineClus PathClus-
tering

100 46878 <1 15000 <1 94000 <1

500 484379 15626 125000 125000 109000 <1
1000 984472 15624 360000 406000 1313000 <1

5000 12564011 126661 7047000 8324000 58773000 31254

10000 20588678 281251 26868000 36659000 193472000 31245

Fig. 4 shows the total average time comparison (in microseconds) for
Gaussian and Radial distributions, considering the values of Table 3 and Table
4. Axis Y is in logarithm scale. The results showed that, considering these two
distributions, Path Clustering was more than 10 times faster on average than
the second faster algorithm: DBScan.

Figure 4: Total Average Runtime

Additionally, to measure the quality of the results, we used two metrics:
precision and recall, derived from the Information Retrieval area.

Precision can be defined as the number of relevant returned results divided
by the number of returned results [14]. We adapted this concept for cluster
scenario, using precision as the as the number of relevant returned clusters
divided by the number of returned clusters.

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

152

Recall can be defined as the number of relevant returned results divided by the
number of relevant results [14]. We used this as the number of relevant returned
clusters divided by the number of relevant clusters. In our experiments, the
maximum number of relevant clusters was five.

Fig. 5 presents the precision results for Gaussian distributions. Fig. 6
shows the recall results for Gaussian distributions. In three of five tests, Path
Clustering got the best results for precision and recall.

Figure 5: Precision for Gaussian Distributions

Figure 6: Recall for Gaussian Distributions

Fig. 7 presents the precision results for Radial distributions. It is possible to
notice that Path Clustering got the best possible results in all cases.

Fig. 8 shows the recall results for Radial distributions. In four distributions,
Path Clustering got the higher recall values.

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

153

Figure 7: Precision for Radial Distributions

Figure 8: Recall for Radial Distributions

It important to mention that Path Clustering used an automatic configuration
that does not demand any parameter from users. It makes the algorithm easier
to use but it may reduce its precision and recall in some cases. One strategy to
improve the results is to adjust the number of grids manually in case of neces-
sity, increasing or reducing slightly this number. In future works, we intend

Fernandes, R.Q.A.
Pinheiro, W.A.
Xexéo, G. B.
De Souza, J. M.

154

to develop a strategy to calculate the best number of grids according to the
distribution and number of points.

CONCLUSION
This paper presents a grouping algorithm named Path Clustering. It is a clustering
grid algorithm that divides data space in segments limited by square shapes called
tiles. The way used to navigate from one tile to another provides a new faster strategy
to group data. It uses a greedy strategy, navigating through local neighbors following
a specific path. Tiles containing one or more points separated by tiles containing no
points receive different colors. Different colors indicate different groups.

After allocating data items (points) in geometric shapes in tile format, the
complexity of our algorithm is related to the number of tiles instead of the number
of points. Thus, the number of tiles is fundamental to reduce the complexity of our
algorithm. In our strategy, a tile is represented by a square shape and the square-side
size is a number related to a concept named Resolution Scale. In order to keep a
balance between low complexity and good results for different data distributions,
we proposed that maximum Resolution Scale should provide a complexity of
O(n), reducing space in memory and time of processing when compared to other
algorithms.

Other interesting characteristic is that the algorithm presented in this paper does
not require parameters from users beyond the data set itself, making easier to use
than many other algorithms.

It was performed a comparative experiment considering Path Clustering and
other five algorithms. The experiments demonstrated our strategy is scalable using
two type of distributions (Gaussian and Radial) with different number of points. Path
clustering showed the best performance in terms of time. Besides, their clusters get a
good precision and recall in most part of tested distributions, considering the idea of
a Contiguous Cluster (Nearest neighbor or Transitive). At the same time, it allows to
find complex patterns from arbitrary data distributions, irregular or not.

Path Clustering implementation used in this work did not apply concurrent
computing to execute the processes. Concurrent algorithms can execute processes
in parallel, reducing processing time. Thus, we intend to implement this feature in
future works, allowing to reduce even more the execution time for grouping data.
Besides, we intend to compare the algorithm in a high-dimensional data scenario
and calculate automatically the best number of grids according to the distribution
and number of points.

REFERENCES
1. Fan Yang, Xuan Li, Qianmu Li, Tao Li. (2014). Exploring the diversity in cluster ensemble

generation: Random sampling and random projection, Expert Systems with Applications,
Volume 41, Issue 10, Pages 4844-4866, ISSN 0957-4174, http://dx.doi.org/10.1016/j.

Path Clustering:
Grouping in an

Efficient Way
Complex Data

Distributions

155

eswa.2014.01.028.
2. Khan, Latifur; Luo, Feng. (2005). Hierarchical clustering for complex data, in press. Int. J.

Artif. Intelligence Tools. Vol. 14 No. 5. World Scientific.
3. Aggarwal, Charu C. and Reddy, Chandan K. (2014). Data Clustering: Algorithms and Ap-

plications. Chapman and Hall/CRC. ISBN-13: 978-1466558212.
4. Sasirekha, K., Baby, P. (2013). Agglomerative Hierarchical Clustering Algorithm- A Re-

view. International Journal of Scientific and Research Publications, Volume 3, Issue 3.
ISSN 2250-3153.

5. Berkhin, Pavel (2002). Survey of clustering data mining techniques. Technical report, Ac-
crue Software, San Jose, CA, 2002.

6. Telgarsky, M., & Vattani, A. (2010). Hartigan’s method: k-means clustering without vo-
ronoi. In International Conference on Artificial Intelligence and Statistics (pp. 820-827).

7. Ester, M., Kriegel, H., Sander, J. and Xu, X. (1996). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining (KDD’,96), pp.226 -231.

8. Schikuta, E., Erhart, M. (1997). The BANG-clustering system: grid-based data analysis. In
Proceeding of Advances in Intelligent Data Analysis, Reasoning about Data, 2nd Interna-
tional Symposium, 513-524, London, UK.

9. Schikuta, E. (1996). Grid-clustering: a fast hierarchical clustering method for very large
data sets. In Proceedings 13th International Conference on Pattern Recognition, 2, 101-
105.

10. Wang, W., Yang, J., and Muntz, R. (1997). STING: a statistical information grid approach
to spatial data mining. In Proceedings of the 23rd Conference on VLDB, 186- 195, Athens,
Greece.

11. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M. (2002). A Monte Carlo algorithm
for fast projective clustering Proceedings of the 2002 ACM SIGMOD international confer-
ence on Management of data, ACM New York, pp. 418-427.

12. Yiu, M. L. and Mamoulis. (2003). N. Frequent-pattern based iterative projected clustering.
In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Mel-
bourne, FL, pages 689–692.

13. Assent, I., Krieger, R., Muller, E., and Seidl, T. (2008). InSCY: Indexing subspace clusters
with in process-removal of redundancy. In Eighth IEEE International Conference on Data
Mining, 2008. ICDM’08, pages 719–724. IEEE.

14. Baeza-Yates, R., Ribeiro-Neto, B. (2011). Modern Information Retrieval: The Concepts
and Technology Behind Search. 2011. ISBN-13: 978-0321416919.

15. Scikit. (2017). scikit-learn user guide. Release 0.19.1. Extracted from: http://scikit-learn.
org/stable/_downloads/scikit-learn-docs.pdf. 2017.

16. Müller. E., Günnemann. S., Assent. I., Seidl. T. (2009). Evaluating Clustering in Subspace
Projections of High Dimensional Data. Home-page: http://dme.rwth-aachen.de/OpenSub-
space/. In Proc. 35th International Conference on Very Large Data Bases (VLDB), Lyon,
France.

17. Tan, P., Steinbach, M., Karpatne, A. and Kumar, V. (2013). Introduction to Data Mining,
(Second Edition). Ed. Pearson. 2013. ISBN-13: 978-0133128901.

18. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Let-
ters, Volume 31, Issue 8. 2010. ISSN 0167-8655.

19. Ultsch, A., Lötsch, J. (2017). Machine-learned cluster identification in high-dimensional
data. Journal of biomedical informatics, ISSN: 1532-0480.

20. Hancer, E., Karaboga, D. (2017). A comprehensive survey of traditional, merge-split
and evolutionary approaches proposed for determination of cluster number. Swarm and
Evolutionary Computation, ISSN: 2210-6502.

