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Abstract: The paper highlights the investigation of nonlinear axial-force 
and moment-curvature relationships for rectangular reinforced concrete 
(RC) beam and column cross sections for the reference reinforced concrete 
building structure considered for Probabilistic Seismic Risk evaluation. The 
highly popular model namely mander’s model is used for concrete stress-
strain relationship since it is simple and effective in considering the effects of 
confinement. The module determines the expected behavior of a user-defined 
cross-section by first dividing the section into a number of parallel concrete 
and steel “fibers”. Then, the section forces and deformations are determined 
from the fiber strains and stresses using fundamental principles of equilibrium, 
strain compatibility, and constitutive relationships assuming that plane sections 
remain plane.

Index Terms: mander’s method, moment-Curvature, Stress-Strain Relationship 
and moment Curvature

1. InTRoduCTIon

Since the country lie in earthquake prone area and many of the destructive 
earthquakes occurred in the history so far resulting in high number of 
casualties due to collapse of buildings and dwellings. a major challenge for 
the performance based seismic engineering is to develop simple yet efficiently 
accurate methods for analyzing designed structures and evaluating existing 
buildings to meet the selected performance objectives  elastic analyses are 
insufficient because they cannot realistically predict the force and deformation 
distributions after the initiation of damage in the building. Inelastic analytical 
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procedures become necessary to identify the modes of failure and the potential 
for progressive collapse. The need to perform some form of inelastic analysis 
is already incorporated in many building codes. Theoretical moment-curvature 
analysis for reinforced concrete columns, indicating the available flexural 
strength and ductility, can be conducted providing the stress-strain relation 
for the concrete and steel are known. The moments and curvatures associated 
with increasing flexural deformations of the column may be computed for 
various column axial loads by incrementing the curvature and satisfying the 
requirements of strain compatibility and equilibrium of forces.

2. STRESS-STRAIn ModEL FoR ConCRETE

mander’s model is highly popular model since it is simple and effective in 
considering the effects of confinement. It considers increase in both the strength 
and ductility of RC members with confined concrete. The model is popularly 
used to evaluate the effective strength of the columns confined by stirrups, 
steel jacket and even by FRP wrapping as accomplished in Figure 1.

Figure 1: mander’s model for Stress-Strain Relationship for Confined 
Concrete

3. STRESS-STRAIn CuRVES FoR REInFoRCInG STEEL

The idealized stress-strain curve for concrete as recommended by IS: 456-2000 
is as shown in Figure 2. Stress-strain curve for steel as per British code CP 110-
1972 as shown in Figure 3, accordingly the term 0.7fy is the simplification of 

the expression fy
fy
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. It gives all the simplified general equations which 

can be used for any grade of steel. 
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4. STRuCTuRAL SYSTEM

The building is an RC G+3 framed structure. The floor plan is same for all 
floors. The beam arrangement is different for the roof. It is symmetric in both 
the direction. The concrete slab is 120 mm thick at each floor level. Overall 
geometry of the structure including the beam layout of all the floors is as shown 
in Figure 4.

Figure 5 and 6 shows the size and reinforcement details for floor beam 
and roof beam sections at the column face. Figure 7 shows the size and 
reinforcement details for column at the beam face.

5. MoMEnT CuRVATuRE FoR BEAM

The most fundamental requirement in predicting the moment Curvature 
behaviour of a flexural member is the knowledge of the behaviour of its 
constituents. With the increasing use of higher-grade concretes, the ductility 

Figure 2: Stress Strain Curve for Concrete

Figure 3: Stress-Strain Curve for Steel
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of which is significantly less than normal concrete, it is essential to confine 
the concrete. In a flexure member the shear reinforcement also confines the 
concrete in the compression zone. The relationship for the bending member as 
depicted in Figure 8 is as follows,

 M

EI E R
= = =

f

x
c

c

1
ϕ 

Figure 4: Overall Geometry of the Structure

Figure 5: Details of Roof Beams
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hence,

 ϕ= =
−

=
+ε ε ε εc s c

x d x d
S  

Figure 6: Details of Floor Beams

Figure 7: Details of columns at various levels

Figure 8: Beam members in Bending
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Where, 
φ = Curvature 
fc = maximum stress in compression in concrete
ε

c 
= maximum strain in concrete

ε
s
 = maximum strain in steel 

x = Depth of neutral axis
d = effective depth of section

let consider BF205 beam section as depicted in Figure 9,

 ρ =
A

A
s

c

 

Figure 9: Detailed BF204 Beam Section

modular Ratio (m) for elastic analysis = 280
14

fck

=

Curvature φ at cracking moment just before cracking

 f f  MPa
cr ck

= =0 7 3 1305. .  

at just before cracking moment is resisted by concrete in tension therefore 
Neglecting steel, N.a. = d/2

 m
f

y
 KNmcr

cr gr= =
1

120 00.  

 ϕ = = =
f

y

M

EI
cr 0 00028.  

Curvature after cracking
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Concrete does not take any tension so depth of neutral axis x is,

 
k = 

k = 0.2179

( ) ( ) ( )ρ ρ ρ ρ ρ ρ+ ′ + + ′
′

− + ′2 2 2n n
d

d
n

 

effective moment of inertia 

 I
bx

a m(D - x) mmeff s
4= + =

3
2

3
7 990.  

 Φat M
M

EIcr
cr

eff

= = 0 00067.  

ε
s
 strain in steel = f

y
/e

s
 = 0.0021

The neutral axis at yielding is given as distance kd from extreme 
compression fiber, where the ratio k is calculated using expression: 

 k = 

k = 0.2179

( ) ( ) ( )ρ ρ ρ ρ ρ ρ+ ′ + + ′
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′ρ
A

bd
s  are the tension and compression steel ratios, n is 

the modular ratio, and d and d’ are the distance of compression and tension 
steel from extreme compression fiber.

A
s
 Steel in tension 

A
s
, Steel in compression

Depth of Neutral axis at yield stage; x = kd =208.65mm = .21m

Taking moment about compressive force due to concrete, yield moment 
is given by:
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y

= −










+ ′ ′ − ′










A f d
kd

A f
kd

d
S y S y3 3

 

Since stress in the tension steel is f
y
, using similar triangles, stress in compression 

steel is calculated as

 f mPay =
− ′

−
=( ) .

d d

d kd
fy 99 01  

Curvature is then obtained as

 ϕ
y

y=
−

=
ε

d kd
0 00277.  
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after yielding of tension steel, its stress remains constant but strain keeps 
increasing until compressive strain in extreme fiber of concrete reaches the 
strain value of ε

cu
 at maximum stress in concrete f

c
’. In order to address the 

nonlinearity in concrete at high strains, Whitney-block is used to approximate 
the parabolic stress distribution in concrete to an equivalent rectangular stress-
block representation.

The calculation of ultimate state requires iteration. For hand calculations, 
let us assume that strain in compression steel ε

s
, exceeds the yield strain ε

y
. 

This assumption will be checked later. equilibrium of tension and compressive 
force gives the depth of neutral axis as;

 c
b

A f A f

f b
s s

c

s y s s

c

=
− ′ ′

′
=

− ′ ′

′
=

a f a f

f
s y    

  

     

    85 36
187

1β
.33319 

ultimate moment is then obtained by taking moment about tension steel as: 
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 ϕu = =
0034

0 01868
c

.  

The ductility factor
 D. F. = 

ϕ

ϕ
u

y

= 6 74.  

Where is φ
u
 ultimate strain in concrete at maximum stress, which is 0.0034 

as per IS456-2000. This is first trial value of ε
u
. assumption of yielding in 

compression is now checked by ensuring:

 ε ε εs cu y

c d
=

−
≥( )

c
 

If the above condition is satisfied then assumption made is true and obtained 
value of(m

u
, φ

u
) defines the ultimate state on the moment-curvature curve. If 

the condition is not satisfied further iteration is required with new trial strain 
value as 
 ε

ε ε
s

=
+

y s

2
 

6. ConCRETE PRoPERTIES

Currently, the entire cross-section is assumed to be unconfined. The compression 
stress-strain relationship of the unconfined concrete is determined using a 
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method developed by mander et al. In this method, the concrete stress, fc is 
given as a function of the strain, ε

c
 as:

 fc
f

r
in mPaC=

′

− +
x r

xr

.

1
 

 x  r = 
e

e eco

c

o sec

=
−

ε
ε

c ,  

ε
c0 

is the strain at peak stress ( f
c
’) and e

c
 is the tangent modulus of elasticity 

of concrete calculated as

 ec       mPa= ′5000 fc  

esec, the secant modulus of elasticity, is the slope of the line connecting the 

origin and peak stress on the compressive stress-strain curve (i.e., Esec=
f
c
′

ε
CO

). 

Crushing of the unconfined concrete is assumed to occur at ε
cu

 2ε
co

.

7. ThE MoMEnT-CuRVATuRE RELATIonShIPS oF ThE 
CoLuMn CRoSS-SECTIonS

This is an iterative process, in which the basic equilibrium requirement P = C-T 
is used to find the neutral axis location, c, for a particular maximum concrete 
compressive strain, ε

cm
 where P = axial force; C = internal compression stress 

resultant; and T = internal tension stress resultant. The total concrete compressive 
stress resultant and the location of its centroid are determined by integrating 
numerically under the concrete stress distribution. The bending moment is 
assumed to act such that the top surface of the cross-section is in compression.

The entire process can be summarized for a cross-section with two layers 
of reinforcing bars as depicted in Figure 10 follows

Figure 10: The Cross-Section with Two layers of Reinforcing Bars

For example the column sections property in present work is 400mm x 
900mm in size with 12-28mm dia bars placed as shown in the figure 11 below. 
The transverse reinforcement for the columns is provided 10mm stirrups/ties 
@ 100mm c/c as figure shows. 
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The calculation of the following four points on a moment-curvature curve 
will be taken for plotting the moment curvature curve for various column 
section shown in this example: ε

cm
 =0.25 ε

cu
;ε

cm
 = 0.5 ε

cu
;ε

cm
 = 0.75 ε

cu
; ε

cm
 = 

1.0ε
cu

(concrete crushing).

A. Axial Load, P 

The axial load considered for sample calculations of Cl15 is 50% of the 
balanced failure load. The balanced load, P

b
, is computed as follows: 

The neutral axis, c = cb
cu

cu y

=
+

d
ε

ε ε
, 

Where, ε
y
= f

y
/e

s

With εcu = 0.004 and d = 848m, c
b
 = 0.525m. 

The concrete compressive resultant, Cc, is determined by numerically 
integrating under the concrete stress distribution curve. 

 Cc

Cc = 3531.24KN

= =∫ ∫f bdx f b
c

dc

c

c
cm

c

b CU

0 0

ε

ε
ε  

The spacing of each layer of steel is  s = 0.198m
The steel forces of each layer top to bottom wise, F

s1
 and F

s2
, F

s3
, F

s4
 and 

F
s5

, respectively, are calculated using similarity to find the strains in the layers. 
Balanced failure condition, by definition, has strain values ε

cu
 = ε

cm
 = 0.0034 

for concrete and ε
s5

= ε
y
= 0.002 for bottom layer of steel. For the top steel,

 ε
s1

0 0031=
− ′

−
=ε

sS

c d

d c
.  

Similarly for second and third layer,

Figure 11: Detailed Cl 15 and 19 Column Section (Ground to 2nd Floor)
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This implies that the first and fifth layer of steel is at yield stress.
hence, 

F
s1

= f
y
a

s1
= 766.61 KN (compression)

F
s2

 = ε
s2

e
s
a

s2
= 458.06KN (compression)

F
s3

 = ε
s3

e
s
a

s3
=195.47KN (tension)

F
s4

 = ε
s4

e
s
a

s4
= 142.45KN (tension) and

F
s5

 = f
y
a

s5
= 766.61KN (tension)

Where, a
s1

, a
s2

, a
s3

 a
s4 

and a
s5 

are the total reinforcing steel areas in each layer. 
as per IS456 consideration the concrete tensile strength in the tension region 
recommends the modulus of rupture to be taken as,

 f f
r c
′ = ′

    MPa for normal weight concrete. 

Thus, for ′ =f c   20 mPa, ′ =f r   3 3.  mPa. The concrete tension force 

 C C  KN (tension)
t    t

= ′ =
1

2
22 97f A

r cr
, .  

Where, a
cr
 is the area of concrete in tension calculated based on the linear 

strain diagram. 
Then, the balanced axial load is found from equilibrium as,

 P C F F F F F Cb c s1 s2 s3 s4 s5 cr= + + − − − −  

Therefore, 50% of the balanced load used is P =1814.20kN.

B. Instant Centroid 

The axial load acts at an “instant” centroid assumes location that for the 
calculation of the moment-curvature relationship. The location of the instant 
centroid is determined by assuming an initial condition where only the user-
selected axial load acts on the cross-section without moment. This loading 
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condition produces a uniform compression strain distribution throughout the 
cross-section. 

let the uniform compression strain be equal to ε
ci 

then,

 P f a f a f a f a f a f aci c s1 s1 s2 s2 s3 s3 s4 s4 s5 s5= + + + + +  

From equilibrium, 
a trial-and-error solution is needed since it is not known in advance. 

Then, the location of the instant centroid, x, from the top compression face is 
determined as,

 

x

f A h
f A d f A d s f A d s

f A d s f

ci c
s s s s ss ss

s s ss

2
2

3
1 1 2 2

4 4

+ + − + − +

− +

( ) ( )

( ) AA d

f A f A f A f A f A f A
ss

ci c s s s s s s s s s s

′

+ + + + +
1 1 2 2 3 3 4 4 5 5

x = 0.4505m

 

The calculation of the first point on the moment-curvature relationship of the 
section can be summarized as follows: 

1. ε
cm

 = 0.25 ε
cu

= .00084

2. assume the neutral axis depth, a distance c = .4m

3. From the linear strain diagram geometry

 ε εs s

c d

d c1 5 0 0031=
− ′

−
= .  

Similarly for second and third layer,

 ε ε

ε ε

ε ε

s s

s cm

s cm

c d s

d c
d c s

c
d c s

c

2 5

3

4

0 0019

0 0008

2

=
− ′ −

−
=

=
− −

=

=
− −

=

.

.

00 0006

0 0021
5

.

.ε ε
s cm

d c

c
=

−
=

 

4. The steel stress resultants are,

F
s1

 = f
y
a

s1
= 282.63 KN (comp)

F
s2

 = ε
s2

e
s
a

s2
 = 84.79 KN (comp)

F
s3

 = ε
s3

e
s
a

s3
 = 129.80 KN (tension)

F
s4

 = ε
s4

e
s
a

s4
= 26.17 KN (tension)

F
s5

 = f
y
as

5
= 350.15 KN (tension)
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5. Determine Cc by integrating numerically under the concrete stress 
distribution curve. 

 

Cc = 

Cc = 1755.09 KN

f bdx f b
c

dc

c

c
cm

c

b cu

0 0∫ ∫=
ε

ε
ε

 

The concrete that has not cracked below the neutral axis contributes to the 
tension force C

t
.

 

′ = ′

=
f f
r c   

t

  MPa

C 3 82 KN0.  

6. Check to see if 

 

P  C   F   F   F   F  F   C

P  KN
b c s1 s2 s3 s4 s5 t

b

= + + + − − −

= 1585 57.  

So, the neutral axis must be adjusted downward, for the particular maximum 
concrete strain that was selected in Step 1, until equilibrium is satisfied. This 
iterative process determines the correct value of c. Trying neutral axis depth c 
= .431m gives,

 ε
s5

 = 00084 (below yield); εs4 = 0.0006; ε
s3

 = 0.0008; ε
s2

 = 0.0019; ε
s1

 = 0.0031 

and

Cc = 1917.44KN; Ct = 28.51KN;

F
s1

 =285.29KN; F
s2

 = 95.34KN;

F
s3

 =101.08KN; F
s4

 = 6.23KN;

F
s5 

= 293.91KN

Section curvature can then be found from,

 ϕ
ε

= =cm

c
0 002125.  

The internal lever arms for the resultant compression and tension forces of the 
concrete measured from the instant centroid. 

Then, the section moment can be calculated as,

 

m = C z  + F z  + F z  + F z  + F z  + F z  + Cc c s1 s1 s2 s2 s3 s3 s4 s4 s5 s5 tzz

m = 872.22 kNm 
t

 

Similarly curvature and moment value are also calculated at ε
cm

 = 0.5ε
cu

; ε
cm

 = 
0.75ε

cu
; ε

cm
 = 1.0ε

cu
 (concrete crushing)
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The moment-curvature plot for column has been shown in Figure 12 and 
for beam as shown in Figure 13.

Figiure 12: moment-Curvature Relationship Curve for Column

Figure 13: moment-Curvature Relationship Curve for Beam

Table 1 shows point at moment-curvature curve for column. Table 2 shows 
moment at various points in beams. Table 3 shows curvature at various points 
in beams. Table 4 shows moment at various points in column and Table 5 
shows curvature at various points in column.
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Table 1. Point at moment-Curvature Curve For Column

Point m(moment) Curvature φ

0 0 0

0.25ε
cu

872.2165 0.0019

0.5ε
cu

1395.398 0.0046

.75ε
cu

1579.791 0.0076

1.0ε
cu

  
(concrete crushing). 1520.344 0.0095

Table 2: moment at Various Points In Beams

Beam Before 
Cracking

after 
Cracking

at 
yield

Crushing of 
Concrete

BF205 120.00 120.00 365.62 361.57

BF204 120.00 120.00 153.21 154.78

BF225 120.00 120.00 237.57 238.17

BF223 120.00 120.00 366.72 363.35

BR6 120.00 120.00 237.45 238.21

BR7 43.20 43.20 88.19 88.20

BR21 120.00 120.00 236.39 236.97

BR20 120.00 120.00 237.57 238.17

Table 3: Curvature at Various Points In Beams

Beam Before 
Cracking

after  
Cracking

at yield Crushing of 
Concrete

BF205 0.00028 0.00067 0.00277 0.019

BF204 0.00028 0.00138 0.00253 0.044

BF225 0.00028 0.00096 0.00262 0.031

BF223 0.00028 0.00067 0.00275 0.020

BR6 0.00028 0.00096 0.00262 0.030

BR7 0.00047 0.00159 0.00453 0.046

BR21 0.00028 0.00096 0.00265 0.027

BR20 0.00028 0.00096 0.00262 0.031
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Table 4: moment at Various Points In Column

Column Origin yield ultimate Strain 
hardening

Cl 15/19 G/2nd 0 987.64 1506.64 802.35

Cl 15/19 3rd 0 440.52 673.06 228.49

Cl 15/19  4th 0 272.33 406.20 217.02

Cl16/20 G/2nd 0 792.80 1226.82 647.90

Cl 16/20 3/4th 0 469.46 723.75 302.12

Table 5: Curvature at Various Points In Column

Column Origin yield ultimate Strain 
hardening

Cl 15/19 G/2nd 0 0.0054 0.0078 0.1468

Cl 15/19 3rd 0 0.0072 0.0102 0.1938

Cl 15/19  4th 0 0.0072 0.0104 0.1938

Cl16/20 G/2nd 0 0.0054 0.0073 0.1462

Cl 16/20 3/4th 0 0.0054 0.0086 0.1281

8. ConCLuSIon

an analytical model is presented to simulate the moment curvature behavior 
of reinforced concrete. Based on control of load increments, the algorithm 
proposed by mander enables determination of moment – curvature-strain 
relationship with any geometry and material properties up to the maximum 
capacity of the section; however with a constant axial load or control of 
deformation increments, this model can be used to compute both the ascending 
and descending branches of the moment-curvature curve. The moment-
curvature (or moment-rotation) relations play an important part in the study of 
limit analysis of two or three dimensional reinforced concrete frames. 
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