Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

Authors

  • Shifatul Islam Department of Information & Communication Technology Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
  • Mohammad Abdullah-AL-Shafi Department of Information & Communication Technology Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
  • Ali Newaz Bahar Department of Information & Communication Technology Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

DOI:

https://doi.org/10.15415/jotitt.2015.32010

Keywords:

Binary to Gray Converter, Quantum Dot Cellular Automata, Gray Code, QCA cell.

Abstract

Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to- gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification.

Downloads

Download data is not yet available.

References

[1] Cho, H. and Swartzlander, E. E., Adder and multiplier design in quantum-dot cellular automata, IEEE Transactions on Computers, 58(6), 2009, 721-727. http://dx.doi.org/10.1109/TC.2009.21
[2] Lent C.S., Tougaw P.D., Porod W.D., and Bernstein., G.H. Quantum cellular automata, Nanotechnology, 4(1), 1993, 49–57.
[3] Seminario J.M, Derosa P.A, Cordova L.E and Bozard B.H., A molecular device operating at terahertz frequencies, IEEE Transactions on Nanotechnology, 3(1), 2004, 215–218. http://dx.doi.org/ 10.1109/TNANO.2004.824012
[4] Zhang, R., Walus, K., Wang, W., and Jullien, G. A., A method of majority logic reduction for quantum cellular automata, IEEE Transactions on Nanotechnology, 3(4), 2008, 443-450. http://dx.doi.org/ 10.1109/TNANO.2004.834177
[5] Hänninen, I. and Takala, J., Binary adders on quantum-dot cellular automata. Journal of Signal Processing Systems, 58(1), 2010, 87-103. http://dx.doi.org/ 10.1007/s11265-008-0284-5
[6] Kummamuru, R. K et al ., Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors, IEEE Transactions on Electron Devices, 50(9), 2003, 1906-1913. http://dx.doi.org/ 10.1109/TED.2003.816522
[7] Tougaw, P. D., Lent, C. S., and Porod, W., Bistable saturation in coupled quantum-dot cells, Journal of Applied Physics, 74(5), 1993, 3558-3566. http://dx.doi.org/ 10.1063/1.354535
[8] Lent, C. S., Tougaw, P. D., and Porod, W., Bistable saturation in coupled quantum dots for quantum cellular automata, Applied Physics Letters, 62(7), 1993, 714-716. http://dx.doi.org/ 10.1063/1.108848
[9] Azghadi MR, Kavehei O, Navi K., A novel design for quantum-dot cellular automata cells and full adders. J Appl Sci 7(22), 2007, 3460–3468.
[10] Cho H and Swartzlander EE., Adder designs and analyses for quantum-dot cellular automata. Nanotechnol IEEE Trans 6(3), 2007, 374–383. http://dx.doi.org/ 10.1109/TNANO.2007.894839
[11] Gin A, Williams S, Meng H, Tougaw PD., Hierarchical design of quantum-dot cellular automata devices. J Appl Phys 85(7), 1999, 3713–3720. http://dx.doi.org/10.1063/1.369737
[12] Ke-ming Q and Yin-Shui X., Quantum-dots cellular automata comparator. In: 7 the International Conference on ASIC. IEEE, Guilin, 22-25, Oct.2007. http://dx.doi.org/ 10.1109/ICASIC.2007.4415874
[13] Kim K, Wu K, Karri R., The robust qca adder designs using composable qca building blocks. IEEE Trans Comput Aided Des Integrated Circ Syst 26(1), 2007, 176–183. http://dx.doi.org/ 10.1109/TCAD.2006.883921
[14] Mardiris VA and Karafyllidis IG., Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circ Theor Appl 38, 2010, 771–785. http://dx.doi.org/ 10.1002/cta.595
[15] Navi K, Farazkish R, Sayedsalehi S, Azghadi MR., A new quantum-dot cellular automata full- adder. Microelectron J 41(12), 2010, 820–826. http://dx.doi.org/ 10.1016/j.mejo.2010.07.003
[16] Sara H, Mohammad T, Keivan N., An efficient quantum-dot cellular automata full-adder. Sci Res Essays 7(2), 2012, 177–189.
[17] Sayedsalehi S, Moaiyeri MH, Navi K., Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9), 2011, 1769-1775. http://dx.doi.org/ 10.1166/jctn.2011.1881
[18] Srivastava S, and Bhanja S., Hierarchical probabilistic macromodeling for qca circuits. IEEE Trans Comput 56(2), 2007, 174–190. http://dx.doi.org/10.1109/TC.2007.30
[19] Tougaw PD and Lent CS., Logical devices implemented using quantum cellular automata. J Appl Phys 75(3), 1994, 1818–1825. http://dx.doi.org/10.1063/1.356375
[20] Vetteth A, Walus K, Dimitrov VS, Jullien GA., Quantum-dot cellular automata carry-look- ahead adder and barrel shifter. IEEE Emerging Telecommunications Technologies Conference, 2002, 2-4.
[21] Wang W, Walus K, Jullien GA., Quantum-dot cellular automata adders. In: 2003 Third IEEE Conference on Nanotechnology, NANO’03, 1, 2003, 461-464. http://dx.doi.org/ 10.1109/NANO.2003.1231818
[22] Zhang R, Walus K, Wang W, Jullien GA., Performance comparison of quantum-dot cellular automata adders. In: IEEE International Symposium on Circuits and Systems, ISCAS 2005, IEEE, 3, 2005, 2522-2526. http://dx.doi.org/10.1109/ISCAS.2005.1465139
[23] Askari M, Taghizadeh M, Fardad K., Design and analysis of a sequential ring counter for qca implementation. In: International Conference on Computer and Communication Engineering. IEEE, Kuala Lumpur, 13-15 May 2008. http://dx.doi.org/ 10.1109/ICCCE.2008.4580743
[24] Dehkordi MA, Shamsabadi AS, Ghahfarokhi BS, Vafaei A., Novel ram cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron J 42(5), 2011, 701–708. http://dx.doi.org/10.1016/j.mejo.2011.02.006
[25] Ghosh B, Gupta S, Kumari S, Salimath A., Novel design of combinational and sequential logical structures in quantum dot cellular automata. J Nanostructure Chem 3(1), 2013, 1–9. http:// dx.doi.org/10.1186/2193-8865-3-15
[26] Huang J, Momenzadeh M, Lombardi F., Design of sequential circuits by quantum-dot cellular automata. Microelectron J 38(4), 2007, 525–537. http://dx.doi.org/10.1016/j.mejo.2007.03.013
[27] Sen B, Goswami M, Some S, Sikdar BK., Design of sequential circuits in multilayer qca structure. In: International Symposium on Electronic System Design (ISED). IEEE, Singapore, 10-12 December 2013. http://dx.doi.org/10.1109/ISED.2013.11
[28] Vankamamidi V, Ottavi M, Lombardi F., A serial memory by quantum-dot cellular automata (qca). IEEE Trans Comput 57(5), 2008, 606–618. http://dx.doi.org/10.1109/TC.2007.70831
[29] Venkataramani P, Srivastava S, and Bhanja S., Sequential circuit design in quantum-dot cellular automata. Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, IEEE, 2008, 534-537. http://dx.doi.org/10.1109/NANO.2008.159
[30] Wu CB, Xie GJ, Xiang YL, Lv HJ., Design and simulation of dual-edge triggered sequential circuits in quantum-dot cellular automata. J Comput Theor Nanosci 11(7), 2014, 1620–1626. http://dx.doi.org/10.1166/jctn.2014.3541
[31] Xiao LR, Chen XX, Ying SY., Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J Zhejiang University Sci C 13(5), 2012, 385-392. http://dx.doi.org/ 10.1631/jzus.C1100287
[32] Yang X, Cai L, Zhao X, Zhang N., Design and simulation of sequential circuits in quantum- dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron J 41(1), 2010, 56–63. http://dx.doi.org/10.1016/j.mejo.2009.12.008
[33] Bahar, A.N., Waheed, S., Uddin, M, A., and Habib, M.A., Double Feynman Gate (F2G) in Quantum-dot Cellular Automata (QCA), International Journal of Computer Science Engineering (IJCSE), 02(6), 2013, 351-355.
[34] Bahar, A.N., Habib, M.A., and Biswas, N.K., A Novel Presentation of Toffoli Gate in Quantum-dot Cellular Automata (QCA), International Journal of Computer Applications (IJCA), 82(10), 2013, 1-4.
[35] Bahar, A.N., Waheed, S., and Habib, M.A., A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA), 1st International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), IEEE, 2014, 1-6. http://dx.doi.org/ 10.1109/ICEEICT.2014.6919121
[36] Sarker, A., Bahar, A.N., Biswas, P.K., and Morshed, M., A Novel Presentation of Peres Gate (PG) in Quantum-Dot Cellular Automata (QCA), European Scientific Journal, 10(21), 2014.
[37] Islam, S.S., Farzana, S., and Bahar, A.N., Area efficient layout design of Multiply Complements Logic (MCL) gate using QCA Technology, Global Journal of Researches in Engineering-J General Engineering, North America, 14(4), 2014, 7-10.
[38] Bahar, A.N., Waheed, S., and Hossain, N., A new approach of presenting reversible logic gate in nanoscale, Springer Plus, 4:153, 2015. http://dx.doi.org/10.1186/s40064-015-0928-4
[39] Bahar, A.N., Waheed, S., and Habib, M.A., An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA), Düzce University Journal of Science & Technology, 3(1), 2015, 219-225.
[40] Shafi, M.A., Islam, M.S., and Bahar, A.N., A Review on Reversible Logic Gates and it’s QCA Implementation, International Journal of Computer Applications (IJCA), 128(2), 2015, 27-34. http://dx.doi.org/10.5120/ijca2015906434
[41] Navi, K., Sayedsalehi, S., Farazkish, R., and Azghadi, M.R., Five-input majority gate, a new device for quantum-dot cellular automata, Journal of Computational and Thoretical Nanoscience, 7, 2010, 1546-1553. http://dx.doi.org/10.1166/jctn.2010.1517
[42] Rumi, Z., Walus, K., Wei, W., and Jullien, G. A., Performance comparison of quantum-dot cellular automata adders, in Circuits and Systems, ISCAS 2005. IEEE International Symposium on, 2005, 2522-2526. http://dx.doi.org/10.1109/ISCAS.2005.1465139
[43] Lent, C. S., and Tougaw, P. D., Lines of interacting quantum-dot cells: A binary wire, Journal of Applied Physics, 74(10), 1993, 6227-6233. http://dx.doi.org/10.1063/1.355196
[44] Imre, A. et al ., Majority logic gate for magnetic quantum-dot cellular automata, Science, 311(5758), 2006, 205-208. http://dx.doi.org/10.1126/science.1120506
[45] Ganesh, E. N., Kishore, L., and Rangachar, M.J.S., Implementation of Quantum cellular automata combinational and sequential circuits using Majority logic reduction method, International Journal of Nanotechnology and Applications, 2(1), 2008.
[46] Walus, K., Dysart, T. J., Jullien, G. A., and Budiman, R. A., QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. Transactions on Nanotechnology, IEEE, 3(1), 2004, 26-31. http://dx.doi.org/10.1109/TNANO.2003.820815
[47] “QCADesigner” http://www.mina.ubc.ca/qcadesigner. Accessed: 25 April 2015.
[48] Baker R.J., CMOS: circuit design, layout, and simulation. John Wiley & Sons, 18, 2011.

Downloads

Published

2015-12-17

How to Cite

Shifatul Islam, Mohammad Abdullah-AL-Shafi, & Ali Newaz Bahar. (2015). Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata. Journal on Today’s Ideas - Tomorrow’s Technologies, 3(2), 145–160. https://doi.org/10.15415/jotitt.2015.32010

Issue

Section

Articles